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uncertainty analysis included any uncertainty due to the ®nite
length of data used to derive the optimisation. For consistency
with earlier work21±24, we have used standard estimates of pattern
amplitudes based on linear regression which are biased towards
zero25 when, as here, there is uncertainty in the signals.

Bearing in mind these caveats, we interpret our results as showing
the following: ®rst, the temperature changes over the twentieth
century cannot be explained by any combination of natural internal
variability and the response to natural forcings alone. Second, the
recent warming, ,0.25 K, can be explained by the response of the
climate to anthropogenic changes in greenhouse-gas concentrations
partly offset by cooling due to anthropogenic sulphate aerosols,
resulting in little net temperature change from 1946 to the mid-
1970s. Last, the warming early this century can also be explained by
anthropogenic causes and internal variability. However, solar
irradiance changes could have made a signi®cant contribution,
,0.125 K, if we assume little error in the relative amplitude of the
forcing of sulphates and greenhouse gases prescribed in our
model. M
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The heat transported northwards by the North Atlantic thermo-
haline circulation warms the climate of western Europe1±3.
Previous model studies4±6 have suggested that the circulation is
sensitive to increases in atmospheric greenhouse-gas concentra-
tions, but such models have been criticised for the use of
unphysical `¯ux adjustments'7±9 (arti®cial corrections that keep
the model from drifting to unrealistic states), and for their
inability to simulate deep-water formation both north and
south of the Greenland±Iceland±Scotland ridge, as seen in
observations10,11. Here we present simulations of today's thermo-
haline circulation using a coupled ocean±atmosphere general
circulation model without ¯ux adjustments. These simulations
compare well with the observed thermohaline circulation, includ-
ing the formation of deep water on each side of the Greenland±
Iceland±Scotland ridge. The model responds to forcing with
increasing atmospheric greenhouse-gas concentrations by a
collapse of the circulation and convection in the Labrador Sea,
while the deep-water formation north of the ridge remains stable.
These changes are similar in two simulations with different rates
of increase of CO2 concentrations. The effects of increasing
atmospheric greenhouse-gas concentrations that we simulate
are potentially observable, suggesting that it is possible to set up
an oceanic monitoring system for the detection of anthropogenic
in¯uence on ocean circulation.
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Figure 1 Time series of various components of the thermohaline circulation.

a, Maximum meridional overturningat all latitudes in the North Atlantic (light blue),

and volume ¯ux of water denser than jv � 27:5 across Cape Farewell (red);

b, maximum meridional overturning at 248 N (green), and volume ¯ux of water

denser than jv � 27:5 across the GIS ridge (dark blue). These time series are

shown for the control (solid lines), 2PC (dashed lines) and GHG (dotted lines)

runs. The GIS ridge, Cape Farewell and 248 N sections are shown in Fig. 4a. The

initial 100 years of spinup of the control run are not shown.
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The model that we use, HadCM3, is a coupled atmosphere±
ocean±sea ice general circulation model developed from an earlier
version used extensively for climate studies12. Speci®c changes
include increased ocean horizontal resolution (from 3:75 3 2:5
degrees longitude 3 latitude to 1:25 3 1:25 degrees), and inclusion
of a modi®ed convection scheme in regions of dense over¯ows13 and
the Gent±McWilliams14 adiabatic diffusion scheme. The increased
resolution allows us to represent the channels in the Greenland±
Iceland±Scotland (GIS) ridge through which the dense over¯ow
water from the Greenland, Iceland and Norwegian (GIN) seas
passes into the North Atlantic. These over¯ows are known to
in¯uence the structure of the whole North Atlantic circulation15.
Atmospheric model improvements include a new radiation scheme,
and revisions to the cloud, convection, boundary layer and land
surface schemes. See ref. 16 for model details.

To investigate the sensitivity of the thermohaline circulation to
changes in atmospheric concentrations of greenhouse gases we
perform three integrations of the model. The control simulation
begins from the present-day ocean state17 and is run for 340 years,
with greenhouse-gas concentrations ®xed at pre-industrial values.
The nominal start date of the run is 1759, and results are presented
below for years 1859±2100 (that is, following a 100-year spinup
period). Runs 2PC and GHG begin from the control state at 1859
and are forced with different scenarios of increasing atmospheric
CO2. In 2PC, CO2 is increased by 2% per year until 1929 (when it
reaches four times the control value), and is held constant thereafter.
This represents an unrealistically fast CO2 increase, to highlight the
sensitivity of the circulation. Run GHG follows historical concen-
trations of all anthropogenic greenhouse gases from 1859 to the
present, followed by the IS92a `business as usual' concentration
scenario to 210018. Calendar dates are only signi®cant for run GHG.

We ®rst describe the control simulation. The model's large-scale

ocean heat transports agree with observational estimates and with
those implied by the surface heat ¯uxes produced by the atmos-
pheric component alone16, allowing a stable, realistic surface climate
without use of ¯ux adjustments16,19,20. The maximum overturning
in the North Atlantic has a mean value of 21.6 Sv over the period
1859±2100, with little secular trend (Fig. 1a). Although this quan-
tity is frequently used by modellers as a measure of the strength
of the thermohaline circulation, it cannot in practice be estimated
from observations. We therefore diagnose the formation and
transport of North Atlantic Deep Water at three important locations
where there are relatively robust observations: the GIS ridge (GIN
seas over¯ow), south of Cape Farewell (the southern tip of Green-
land), and the transatlantic section at 248 N. For the GIS ridge the
mean ¯ow is 8.5 Sv, compared with the observational estimate11 of
5.6 Sv (Fig. 1b). The model North Atlantic is somewhat too salty,
and hence the over¯ow density of jv � 28:3 is higher than the
observed value11 of 28.0. At Cape Farewell, the transport shows
interdecadal variability with a magnitude and timescale which is
consistent with a recent reconstruction based on historical hydro-
graphic data21 (Fig. 1a). The model's mean transport is 13.0 Sv,
consistent with the only direct current-meter measurements at this
section22. At 248 N the model ¯ow is 17.4 Sv, compared with the
observational estimate2 of 19.3 Sv (Fig. 1b). Thus the model gives a
reasonable quantitative simulation of the ¯ow of North Atlantic
Deep Water, and in particular the partition of the ¯ow between
sources to the north and south of the GIS ridge. None of the section
transports shows marked secular drift over the period 1859±2100,
although there is some drift in the vertical structure of the ¯ow at
248 N due to gradual intrusion of Antarctic Bottom Water16.

Next we discuss results from run 2PC. The maximum over-
turning (occurring at about 308 N) falls from around 23 Sv to 14 Sv
as CO2 is increased, then recovers slightly after 1929 (Fig. 1a). This is

Figure 2 Decadal mean velocity in the North Atlantic at 2,731m depth. a, Control

run 1859±69; b, control run 2089±99; c, 2PC 1929±39; d, GHG 2089±99. For clarity,

only velocities greater than 0.7 cm s-1 are shown. A scale vector is shown at the

bottom left of each panel.
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qualitatively similar to some earlier studies5,6, but the circulation
does not collapse completely as it did in an earlier 4 3 CO2 simu-
lation using the GFDL model4. This difference may be linked to a
weaker increase of freshwater input to the North Atlantic in
HadCM3 than in the GFDL model. The `hydrological sensitivity'23

k of HadCM3 is 0.023 Sv K-1, compared with 0.03 Sv K-1 for the
GFDL model23. For HadCM3, k includes a contribution of
0.003 Sv K-1 from increased melting of the Greenland ice sheet.
This agrees well with estimates based on more sophisticated ice-
sheet models24. Unlike previous studies, there is no possibility here
that the circulation is arti®cially stabilized or destabilized through
a large proportion of the surface heat and freshwater ¯ux being
contained in (®xed) ¯ux adjustment terms, which cannot vary as the
forcing and circulation change9. For this reason, we believe that we
can have more con®dence in the mechanisms of thermohaline
circulation change produced by our model.

The changes in maximum overturning are re¯ected in the over-
turning at 248 N which drops by 20±25% by the time of CO2

quadrupling (Fig. 1b). The volume ¯ux across the GIS ridge is
relatively stable throughout the run (Fig. 1b), although the out¯ow
water becomes warmer and lighter as the climate warms. The main
changes in the deep circulation take place south of the GIS ridge.
The cyclonic circulation in the Labrador Sea (Fig. 2a, b) collapses
completely by the time of CO2 quadrupling (Fig. 2c). This is
re¯ected in a collapse of the ¯ow across the Cape Farewell section
(Fig. 1a). The deep Labrador Sea circulation is driven by the density
contrast between the dense over¯ow water entering the Labrador

basin at Cape Farewell and the lighter water in the interior Labrador
basin. As a result of surface warming in the GIN seas, the GIS
over¯ow water becomes lighter through the run (mean density
jv � 28:3 at the start of the run to jv � 28:1 in 1929), and this is
re¯ected downstream in the density of the deep boundary current
northeast of Cape Farewell (Fig. 3a, c, segment CD). The interior
Labrador water (Fig. 3a, c, segment BC) is less strongly ventilated, so
its density changes less; by 1929 the deep boundary current water is
no denser than the interior water, so there is no longer a pressure
gradient to drive the deep water around the Labrador Sea.

Further northwest in the Labrador Sea is a site of convection,
shown by the doming of density surfaces in Fig. 3a, segment AB.
Labrador Sea water formed here contributes to the southward
¯owing North Atlantic Deep Water at 248 N3. In the control run,
the convection varies on interdecadal timescales, as observed25

(compare Figs 3a and b), but by 1929 in 2PC (Fig. 3c) the convection
has ceased as a result of surface freshening and warming.

To summarize, the amount of over¯ow of deep water across the
GIS ridge appears remarkably insensitive to the CO2 increase, but
because the over¯ow water becomes lighter than the interior deep
Labrador Sea its circulation around the Labrador Sea collapses.
Convection in the Labrador Sea also stops. These changes are
re¯ected further downstream at 248 N, where the NADW ¯ow is
reduced by ,20%.

In GHG, the imposed radiative forcing at 2089 is approximately
equivalent to CO2 quadrupling, and the ¯ow changes are qualita-
tively and quantitatively similar to those in 2PC in 1929 (Figs 1, 2d,
3d). Thus the circulation changes appear robust, and the ®nal
state appears to be not strongly dependent on the time pro®le of
greenhouse-gas increase in this case, at least up to 210026. In GHG,
the Labrador Sea convection collapse occurs around 1999±2029
(we note that GHG does not include all forcings, for example,
the mitigating effect of sulphate aerosols which would delay the
response).

By the time of CO2 quadrupling, the sea surface temperature has
increased by several degrees over most of the North Atlantic (Fig. 4),
and the climate of western Europe has warmed substantially.
However the ocean warming is a minimum, with even some regions
of cooling (in the northeast Atlantic and Greenland Sea), suggesting
that the changes in thermohaline circulation are important in
modifying the surface response to the greenhouse-gas increase.

A number of factors should be borne in mind concerning our
results. First, there is a slight drift in the density ®eld through the
control run (Fig. 3a, b); but this drift is smaller than the density
changes in the over¯ow water (Fig. 3c, d). Second, the model's GIS
over¯ows take place through grid-scale channels. Most of the model
over¯ow passes through the Denmark Strait between Greenland
and Iceland, whereas a signi®cant proportion of this ¯ow is
observed to the east of Iceland11. In reality, the channels are
narrower than the model grid scale, but previous model studies
suggest that the sill depths, and not their widths, may control the
¯ow27. It is clearly important to improve understanding of the
physics and modelling of over¯ow processes, given their funda-
mental in¯uence on the thermohaline circulation15,28. Third,
because the deep-water formation is localized in the model (as in
reality), the changes in thermohaline circulation may depend on
relatively small-scale features of the atmospheric response, which
vary between general circulation models24. Last, the sensitivity of the
hydrological cycle to climate change is an important factor in the
response of the thermohaline circulation, and remains subject to
both observational and modelling uncertainty23.

Despite the above uncertainties, we believe that the HadCM3
model has reached a level of realism where it can give valuable
information on possible future changes in thermohaline circula-
tion. This not only leads to more con®dent predictions of climate
change, but can also inform the design of monitoring systems for
oceanic climate change. Our results suggest a clear spatial pattern

Control 1859-69

A B C D

3,000

2,000

1,000

0

D
ep

th
 (

m
)

Control 2089-99

A B C D

3,000

2,000

1,000

0

2PC 1929-39

A B C D

3,000

2,000

1,000

0

D
ep

th
 (

m
)

GHG 2089-99

A B C D

3,000

2,000

1,000

0

27.4 27.5 27.6 27.7 27.8 27.9 28 28.1

Figure 3 Potential density jv (kg m-3) on section ABCD. The section is shown in

Fig. 4a. The segment DC follows approximately the core of the dense over¯ow

water from Denmark Strait. The doming between A and B is evidence of
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for the response of the ocean thermohaline circulation to CO2

forcing. If this pattern is robust, a monitoring system based on
repeated hydrographic sections in the Labrador Sea and at 248 N,
and current-meter measurements of the GIS over¯ows and the Cape
Farewell boundary current, could provide a means of detection of
changes in thermohaline circulation resulting from increased green-
house-gas forcing. Much of this would build on the existing
historical database11,21,22,29,30. The extent to which such a signal
could be detected at present depends on the natural variability in
these elements of the circulation, which has not yet been fully
quanti®ed from observations. M
Received 6 November 1998; accepted 26 March 1999.
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Figure 4 Changes in decadal mean sea surface temperature (8C). a, Difference

between 2PC run 1929±39 and control 1859±69; b, difference between GHG run

2089±99 and control 1859±69. In a are also shown the approximate paths of the

sections used in Fig. 1 (the GIS ridge (MN), Cape Farewell (PQ), 248 N (XY)) and

Fig. 3 (ABCD).
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Changes in neural responses based on spatial attention have been
demonstrated in many areas of visual cortex1±4, indicating that the
neural correlate of attention is an enhanced response to stimuli at
an attended location and reduced responses to stimuli elsewhere.
Here we demonstrate non-spatial, feature-based attentional
modulation of visual motion processing, and show that attention
increases the gain of direction-selective neurons in visual cortical
area MT without narrowing the direction-tuning curves. These
®ndings place important constraints on the neural mechanisms of
attention and we propose to unify the effects of spatial location,
direction of motion and other features of the attended stimuli in a
`feature similarity gain model' of attention.

We studied the in¯uence of attention on the sensory selectivity
of neurons in visual cortex, namely direction-selective neurons in the
middle temporal visual area (MT), which is important in the percep-
tion of visual motion and for motor planning5,6. MT neurons have been
linked directly to psychophysical performance in motion tasks7 and
they characteristically show direction tuning curves (bell-shaped
response pro®les as a function of stimulus direction; Fig. 1b), which
account well for psychophysical thresholds of motion perception8.

We recorded from neurons in area MT of two macaque monkeys
while using displays of coherently moving random dot patterns
(RDP) to determine what effect attention might have on these
direction tuning curves. Attention might enhance the sensory gain
of the neuron, that is, increase the response to all attended stimuli
by the same proportion (`multiplicative modulation'), leaving the


