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Empirical reconstructions of the Northern Hemisphere
(NH) temperature in the last millennium based on multy
proxy records depict small-amplitude variations followed
by a clear warming trend in the last two centuries. We use
a coupled atmosphere-ocean model simulation of the last
1000 years as a surrogate climate to test the skill of these 
methods, particularly at multidecadal and centennial
timescales. Idealized proxy records are represented by 
simulated grid-point temperature, degraded with
statistical noise. The centennial variability of the NH 
temperature is underestimated by the regression-based 
methods applied here, suggesting that past variations may
have been at least a factor of two larger than indicated by
empirical reconstructions.

Reconstruction of past climate from palaeoclimate proxy data
is important for detection of anthropogenic climate change. A
number of studies have attempted to reconstruct variations in
global or Northern Hemisphere (NH) temperature within the
last millennium by regressing proxy indicators and early
instrumental time series on recent instrumental climate
variables with high spatial resolution (1–3). Regression
models are developed during the period of common
instrumental and proxy data, and are then applied to longer
proxy records to reconstruct past climates. Similar methods
are applied for the reconstruction of atmospheric circulation
indices, e.g. the North Atlantic Oscillation (4) or the Antarctic
Oscillation (5). A number of reconstructions show that the
temperatures in the last millennium were characterized by 
geographically varying warm values in the 11th and 12th

centuries followed by a secular cooling trend punctuated by
decadal-scale colder periods in the mid 16th, early 17th and 
early 19th centuries, respectively (6). These cooler intervals
were followed by the marked warming experienced until
today. Although the amplitude of these preindustrial
variations is still debated, according to the most quoted NH
temperature reconstruction (1, 2, hereafter MBH98 and
MBH99) and the last IPCC report (7) these variations were of
small amplitude. However, recent studies with General
Circulation Models suggest that these centennial variations

may have been larger (8–10). In the following we will test,
using a coupled atmosphere-ocean model simulation of the
past 1000 years as surrogate climate, whether the
reconstruction method of MBH98 and MBH99 and a much
simpler regression method can yield realistic estimates of the
multidecadal and secular temperature variations.

A number of modeling studies of the evolution of the
climate in the last centuries (11–14) pose some questions 
about the reliability of empirical reconstructions based on
regression methods. For instance, concerning the cooling 
around 1700, the reconstructions by MBH98 agree with the
results obtained with the GISS model only in the model
version with a low climate sensitivity (0.4 K/W/m2) (10).
Similarly, the agreement between an energy balance model
(11) and reconstructions is achieved by prescribing a model
sensitivity to changes in radiative forcing of 0.5K/W/m2.
These values of climate sensitivity are at the low end of the
range of the models included in the IPCC analysis (7). Other
reconstructions that indicate markedly stronger cooling in the
16th-18th are, for instance, the result of empirical methods that
explicitly aim to preserve low-frequency variability (15) and
the borehole-based reconstructions (16), which, interestingly,
is not based on empirical regression methods. This apparent
discrepancy poses the question as to whether model
simulations overestimate secular climate variability or
regression-based reconstructions underestimate it.

The reliability of these empirical methods at centennial
timescales can be tested in the surrogate climate simulated by 
three-dimensional climate models driven by plausibly
estimated historical external forcing. The results of the
reconstruction process can then be validated against the
climate fields simulated by the climate model. The data 
representing the proxy records are climate variables simulated
at grid-box resolution, that can be degraded with statistical
noise to mimic more realistic data [so-called pseudo-proxies
(17)]. Here, we follow this strategy using the output of a 
climate simulation of the last millennium with the coupled
AO-GCM ECHO-G (18), driven by estimations of historical
climate forcing. This simulation provides a data set, where
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the potential nonstationarity of the covariances and the length
of the time series are similar to those found in applications of
the empirical reconstruction methods.

This simulation reproduces warming around 1100 and
extended coolings over the Spörer, Maunder and Dalton
Minima as near-global events, as well as the recent
anthropogenic warming. Compared to the reconstructions of
MBH99, the variations are, however, stronger. For the
purpose of this paper it is not critical if the simulation is not
absolutely realistic due to model limitations (e.g. coarse
resolution or deficient representation of processes) or
uncertainties in external. The crucial point is that the model
simulates a reasonable, internally consistent, climate, and the
external forcing lies within the envelope of possible values. In
this case, it will be used as a virtual world to determine the
skill of regression-based reconstruction methods like MBH98
to estimate its temperature variations.

Here, we focus on the reconstruction of Northern
Hemisphere (NH) temperature. For this analysis we apply as
realistically as possible the statistical method of MBH98.
However, when arbitrary choices are required, the a priori
most favorable for the statistical method are implemented,
thus probably minimizing the loss of variance in the statistical 
reconstructions. For instance, the proxy network in MBH98
gets coarser backwards in time, but the pseudo-proxy network
in this study is not decimated to avoid loss of skill. Also, only
temperature pseudo-proxies are used to reconstruct the
temperature evolution. The pseudo-proxies are generated by
adding a statistical white noise to the simulated temperatures
in grid points co-located to the MBH98 proxy network (1).
Several tests with varying amounts of noise have been carried
out.

The loss of variance due to a regression-type method may
be simply conceptualized (18). The proxy data P are thought
to blend local temperature Tl and unrelated variability : P = 

Tl . The temperature variations are essentially estimated
as Tl

* =  P where  = T/ P < 1 and  is the correlation
between Tl and P. Therefore Variance(T*) = ²Variance(Tl) < 
Variance(Tl). In case of proxy data, the correlation  is 
mostly of the order of 0.4-0.7 (8), resulting in a leakage or
variance of the order of 50-80%. In particular, if Tl has a red
spectrum and  has a white spectrum, T* will underestimate
the low-frequency variance of Tl. In the case of MBH98 and
other reconstructions, the methodological process is more
sophisticated, but the fundamental problem of the loss of
variance due to noisy proxy data may exist also in these
studies (19). This loss of variance, also known in areas such
as regionalization and long-term forecasting (20), is 
sometimes parched by artificially inflating the parameter .
For paleoclimate reconstructions,  should be made timescale
dependent, and this dependency is unknown.

To implement the method of MBH98, we select model
grid boxes co-located with their proxy data network (Fig. 1;
red pixels), and add white noise (21) to the grid-point
temperatures Tg, so that the pseudo-proxy data are P = Tg + .
The variance of varies between m = 0 and m = 4 ×Var(Tg).
The correlation between the Tg and P is then (1+m)-1/2. Thus,
with m = 0, the local P variance described by Tg is 100%, for
m = 1, when noise with the same variance as the local
temperature is added, the percentage of described variance is
50%. For m=4, the described variance is only 20%. Ideally,
the reconstructions would coincide with the simulated NH
temperature, but actually they do not, even for m=0 (Fig. 2A,
illustrating the loss of variance induced by the method alone).
The short term variations are reasonably reproduced, at least
for m < 4. For instance, on interannual timescale the fit 
between simulated and reconstructed NH temperature is 
good, with a calibration Reduction of Error statistics of 0.7 
for perfect pseudo-proxies and 0.30 for pseudo-proxies with
=0.5. The substantial underestimation of low frequency

temperature variations is evident from Fig. 2B. For example,
only 20% of the 100-year variability is recovered when the
noise level is 50%. For time scales of 20 years, about three-
quarters of the variability is lost. Similar results are obtained
with a simulation with the HadCM3 climate model,
demonstrating that the results obtained here are not dependent
on the particular climate characteristics of the ECHO-G 
simulation (18). Also a spatially varying level of noise does
not essentially modify these conclusions (18).

Our set-up allows the test of a number of hypotheses. The
first hypothesis is that the inclusion of more instrumental data
would improve the estimate, as the multi-proxy data used by
MBH99 contained a number of long instrumental temperature
data, which start typically at the end of 18th century. To test
the influence of such instrumental data, we have included grid
box temperatures without adding noise (18). The effect of this
modification on the hemispheric temperature was small - the
differences in the reconstructed temperature anomalies were
within a range of 2%. This can be explained by the relatively
low number of perfect pseudo-proxies included in 
comparison with the total number of pseudo-proxies, and by
the built-in robustness against local influences of the inverse
regression method used by MBH98, since the signal is 
extracted non-locally from the whole proxy data set
simultaneously (18). Other direct regression methods, aimed
at more regionally limited temperature reconstructions, do
show an improvement when instrumental records are
included in the proxy net-work (22).

The second hypothesis is related to the sparseness of the
proxy locations (Fig. 1; red pixels). The proxy data set was
enlarged by adding 15 locations in Asia and Africa (Fig. 1, 
blue pixels), to increase the spatial coverage. This leads to a 
minor improvement in the NH temperature reconstruction
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(Fig. 3), which was largely independent of whether Southern
Hemisphere pseudo-proxies were included.

Lastly, we test whether the range of variability present in
the instrumental period is sufficient to reconstruct the climate 
of past centuries. To test this hypothesis, 40 years were taken
from the Late Maunder Minimum (1680-1720) and 40 years
from the early part of the 20th century (1900-1940) to
calibrate the statistical model, thereby expanding the range of
temperature variability present in the pseudo-proxies. When
the proxies are free of noise, the reconstruction of the
simulated NH temperature is greatly improved (Fig. 3). With
50% local noise included, the reconstruction is also improved,
although the loss of low frequency variance is still large.
Therefore, augmenting the variability in the calibration period
improves the skill, but obviously this is limited by the
available observational record.

A further question is whether the limitations we have
found are common to regression methods in general. Thus,
two further approaches were tested. In the first, local
temperatures were estimated by a linear regression from
pseudo-proxies, and the local temperature estimations were
spatially averaged to derive the NH temperature. This method
mimics the situation in which e.g. local dendrochronologies,
calibrated in terms of local temperature, are just
arithmetically averaged. In the second approach, the
pseudoproxies at the various locations were directly simply
averaged. This is more similar to the borehole methodology
(16). For the first method, we find qualitatively the same, but 
quantitatively even worse problems than with the MBH98
method, i.e. the underestimation of low-frequency variability
for a given amount of noise is greater than for MBH98, 
whereas the second method returns good estimates of NH 
temperature, with very little loss of variance with 75%
variance noise (Fig. 4). This result is not surprising as the first 
method suffers from the variance loss related to regression,
while in the second the noise contributions are simply
averaged out. 

Hints of the underestimation of low-frequency variability
by empirical reconstruction methods have been found in
previous studies, based either on short data sets (17) or 
climate simulations with fixed external forcing (23). In a
study based entirely on an instrumental data set (17), the
spectrum of the difference between the reconstructed and
observed global mean annual temperature is, albeit consistent
with a white noise assumption, slightly red. In a further
analysis of an instrumental data set and data from a long
control simulation with the GFDL climate model (with
constant external forcing) and a relatively short simulation of 
143 years driven by varying external forcing (23), the spectra
of the temperature differences from the analysis of control
simulation are red (although again statistically compatible
with white noise assumption). In this externally forced

simulation it was found that the temperature reconstructions
are biased if the external forcing leads to nonstationary
behavior in the verification period. In a long control
simulation (1000 years) with the model ECHO-G (24), the
spectrum of the reconstructed annual global temperature
underestimates the spectrum of the simulated global
temperature at very low frequencies. 

Climate simulations of the last millennium are burdened
by model limitations and uncertainties in the external forcing,
and therefore their output has to be considered with care. 
However, they provide a surrogate climate realistic enough to
conclude that the use of the regression methods considered
here, which exploit short-term cross-correlations to
reconstruct past climates, suffer from marked losses of
centennial and multi-decadal variations. This conclusion
probably applies to most other regression-based methods.
Other methods that estimate past temperatures using physical,
as opposed to statistical, methods [e.g. borehole temperature
profiles (16)], or regression methods that address retention of
the information of the low frequency variability contained in
the proxy indicators (25) may be in theory free from this 
specific caveat. Our results indicate that a detailed testing of
these reconstruction methods in simulated climates should be
an essential part in the reconstruction process and may help in
the design of better reconstruction methods.
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Fig. 1: Grid-boxes in the ECHO-G model, from which
simulated temperatures are used to estimate Northern
Hemisphere temperatures. The red pixels are used for the
basic reconstruction; the blue pixels are added in a test of
whether a better spatial coverage would improve the
reconstruction.

Fig. 2 (A) The Northern Hemisphere annual temperature
evolution over the last 1000 years. The NH annual

temperature simulated by the model ECHO-G and MBH98-
reconstructions of this temperature from 105 model grid-
points mimicking the multi-proxy network of MBH98.
Increasing amounts of noise have been added to the grid-
point temperatures to mimic the presence of other than
temperature signals in the proxies. The corresponding local
correlation is also indicated. The 2-sigma uncertainty range 
(derived as in MBH98 from the variance of the interannual
residuals) for the different noise levels is indicated. The
reconstruction with =0.5 is shown with its 2×sigma
uncertainty range. (B) the spectra of the NH annual
temperatures shown in (A). 

Fig. 3: Simulated (black) and estimated Northern Hemisphere
temperature (colors) showing the effect of noise. Different
set-ups for the estimation were used: the standard method
with 50% noise added (green); with additional pixels in 
Africa and Asia (locations, Fig. 1) with 50% noise (light blue)
and without noise (dark blue); with a different fitting period,
namely 1680-1720 plus 1900-1940 (instead of the standard
1900-1980) with 50% noise (light red) and without noise
(dark red).

Fig. 4. Simulated NH temperature compared with an estimate
with a simple local linear regression on the pseudo-proxies
used in Fig. 2. The local temperature is estimated from the 
each pseudo-proxy and the result is simply averaged over all
pseudo-proxies locations to obtain the NH estimate. Also
shown is the arithmetic mean of the perfect pseudo-proxies 
and of the pseudo-proxies containing 50% noise. 
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