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Abstract. To aid climate policy decisions, accurate quantitative descriptions of the uncertainty
in climate outcomes under various possible policies are needed. Here, we apply an earth systems
model to describe the uncertainty in climate projections under two different policy scenarios. This
study illustrates an internally consistent uncertainty analysis of one climate assessment modeling
framework, propagating uncertainties in both economic and climate components, and constraining
climate parameter uncertainties based on observation. We find that in the absence of greenhouse gas
emissions restrictions, there is a one in forty chance that global mean surface temperature change
will exceed 4.9 ◦C by the year 2100. A policy case with aggressive emissions reductions over time
lowers the temperature change to a one in forty chance of exceeding 3.2 ◦C, thus reducing but not
eliminating the chance of substantial warming.

1. Introduction

Policy formulation for climate change poses a great challenge because it presents a
problem of decision-making under uncertainty (Manne and Richels, 1995; Morgan
and Keith, 1995; Nordhaus, 1994; Webster, 2002; Hammit et al., 1992). While
continued basic research on the climate system to reduce uncertainties is essential,
policy-makers also need a way to assess the possible consequences of different
decisions, including taking no action, within the context of known uncertainties.
Here, we use an earth systems model to describe the uncertainty in climate projec-
tions under two different policy scenarios related to greenhouse gas emissions. This
analysis propagates uncertainties in emissions projections and uses observations to
constrain uncertain climate parameters. We find that with a policy of no restrictions
on greenhouse gas (GHG) emissions, there is one chance in two that the increase in
global mean temperature change over the next century will exceed 2.4 ◦C and one
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chance in twenty that it will be outside the range 1.0–4.9 ◦C. A second hypothetical
policy case with aggressive emissions reductions over time lowers the temperature
change to one chance in two of exceeding 1.6 ◦C and one chance in twenty of being
outside the range 0.8–3.2 ◦C; thus this policy reduces the chance of high levels of
global warming but does not eliminate the chance of substantial warming.

Decision-making under uncertainty is an appropriate framework for the climate
problem because of two basic premises: (i) the cumulative nature of atmospheric
greenhouse gases, and the inertia of the oceans, means that if one waits to resolve
the amount of climate change in 2050 or 2100 by perfectly observing (or fore-
casting) it, it will take decades or centuries to alter the observed trends – effective
mitigation action must be started decades before the climate changes of concern
are actually observed; (ii) a significant part of our uncertainty about future climate
change may be unavoidable – details of climate and weather over longer periods
are likely to remain unpredictable to some degree, and uncertainty in projecting
future levels of human activities and technological change is inevitable. Thus,
informed climate policy decisions require current estimates of the uncertainty in
consequences for a range of possible actions. Furthermore, the use of consistent
and well-documented methods to develop these uncertainty estimates will allow us
to track the changes in our understanding through time.

Recognition of the importance of providing uncertainty estimates has been in-
creasing in recent years. Authors for the Third Assessment Report (TAR) of the
Intergovernmental Panel on Climate Change (IPCC) were encouraged to quantify
uncertainty as much as possible (Moss and Schneider, 2000) and indeed, uncer-
tainty was quantified for some aspects of climate change in the TAR. Uncertainty
in key results, however, such as the increase in global mean surface temperature
through 2100, was given only as a range without probabilities (Houghton et al.,
2001). Since the IPCC TAR was published, several studies have recognized this
shortcoming and contributed estimates of the uncertainty in future climate change
(Schneider, 2001; Allen et al., 2000; Wigley and Raper, 2001; Knutti et al., 2002;
Stott and Kettleborough, 2002).

These previous attempts to describe uncertainty have, however, been limited
in significant ways. First, recent climate observations were not used to constrain
the uncertainty in climate model parameters in some studies (Wigley and Raper,
2001). Second, by using only one Atmosphere-Ocean General Circulation Model
(AOGCM), uncertainties in climate model response are reduced to uncertainty in
a single scaling factor for optimizing the model’s agreement with observations
(Stott and Kettleborough, 2002). Third, the IPCC’s emissions scenarios were not
intended to be treated as equally likely, yet some authors have assumed that they
were (Wigley and Raper, 2001). Indeed, Schneider (2001, 2002) has demonstrated
the ambiguity and potential dangers that result from the absence of probabilities
assigned to emissions scenarios. Fourth, other authors estimated uncertainty in
future climate change only applied to specific IPCC emissions scenarios rather
than providing equal treatment of the uncertainty in the emissions projections
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(Allen et al., 2000; Knutti et al., 2002; Stott and Kettleborough, 2002). As such,
these studies analyzed the uncertainty only in the climate system response without
characterizing the economic uncertainty except through individual IPCC emissions
scenarios. Finally, none of these previous studies have examined the uncertainty
in future climate change under a policy scenario leading to stabilization of GHG
concentrations.

Our study builds on previous estimates of uncertainty in future climate changes
but with three significant improvements: (1) we use explicit probabilities for dif-
ferent emissions projections, based on judgments about the uncertainty in future
economic growth and technological change (Webster et al., 2002) and on docu-
mented uncertainty in current levels of emissions (Olivier et al., 1995); (2) we use
observations to constrain the joint distributions of uncertain climate parameters so
that simulated climate change for the 21st century is consistent with observations
of surface, upper-air, and deep ocean temperatures over the 20th century (Forest et
al., 2000, 2001, 2002); and (3), we estimate uncertainty under a policy constraint
as well as a no policy case, to show how much uncertainty remains even after a
relatively certain cap on emissions is put in place. Using this approach, we provide
a more comprehensive picture of the relative likelihood of different future climates
than previously available.

The no policy and policy constraint cases are modeled as once-and-for-all de-
cisions, with no learning or change in policy along the way. In reality, climate
policy will be revised as we continue to learn and respond to new information and
events. Policy decisions are therefore better modeled as sequential decisions under
uncertainty (Webster, 2002; Hammitt et al., 1992; Manne and Richels, 1995). In
order to perform such analyses, however, the uncertainty in projections must first
be quantified. Thus the work presented here is a necessary precursor to a more
sophisticated treatment of climate policy. Also, we present here an analysis of
uncertainty in one modeling framework, which does not treat all of the structural
uncertainties.

The quantification of probabilities for emissions forecasts has been the topic of
some debate. There are two distinct ways to approach the problem of forecasting
when there is substantial uncertainty: uncertainty analysis (associating probabili-
ties with outcomes), and scenario analysis (developing ‘plausible’ scenarios that
span an interesting range of possible outcomes). The IPCC Special Report on
Emissions Scenarios (SRES) (Nakicenovic, 2000) used the plausible scenario ap-
proach, where all the scenarios developed were considered ‘equally valid’ without
an assignment of quantitative or qualitative likelihoods.

One benefit of a scenario approach is that it allows detailed exploration of what
outcomes are produced by particular sets of assumptions. In assessments involving
a set of authors with widely diverging views, it is typically easier to avoid an
impasse by presenting equally valid scenarios without attaching likelihoods.

Uncertainty analysis requires identification of the critical uncertain model
structures and parameters (or inputs), quantification of the uncertainty in those
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structures and parameters in the form of probability distributions, and then sam-
pling from those distributions and performing model simulations repeatedly to
construct probability distributions of the outcomes. With this approach, one can
quantify the likelihood that an outcome of a model (or range of models) falls within
some specified range. Hence, unlike the scenario approach, uncertainty analyses
indicate better the likelihood of the potential consequences, or risks, of a particular
policy decision.

It has been argued that when it comes to socio-economic processes that drive
emissions, there should be no attempt to assign probabilities. However, if emissions
projections are presented without relative likelihoods, non-experts will substitute
their own judgment (Schneider, 2001). One analysis has assumed that all of the
IPCC SRES scenarios were equally likely (Wigley and Raper, 2001). Other studies
have used one or two representative scenarios to calculate future uncertainty (Allen
et al., 2000; Knutti et al., 2002; Stott and Kettleborough, 2002), which then require
judgments about the likelihood of the emissions scenarios that were used if they
are to be relevant to policy. By using formal techniques to elicit judgments from
those who are expert in the underlying processes that contribute to uncertainty in
future emissions, one can provide this additional information for policymaking.

Because judgments are ultimately required for policy decisions, the difference
between formal quantitative uncertainty analysis and the scenario approach is
not whether a judgment about likelihood of outcomes is needed but rather when
and by whom the judgment is made. The evidence is strong that experts and
non-experts are equally prone to well-known cognitive biases when it comes to
assigning probabilities, but also that formal quantitative approaches can reduce
these biases (Morgan and Henrion, 1990; Tversky and Kahneman, 1974). Thus,
unless scientists who develop future climate projections use the tools of uncertainty
analysis and their judgment to describe the likelihood of outcomes quantitatively,
the assessment of likelihood will be left to other scientists, or policy makers, or
the public who will not have all the relevant information behind those projec-
tions (Moss and Schneider, 2000). Our views are that: (1) experts should offer
their judgment about uncertainty in their projections, and (2) formal uncertainty
techniques can eliminate some of the cognitive biases that exist when people deal
with uncertainty. Of course, there will remain a need for experts and non-experts
to make judgments about uncertainty results: uncertainty analysis is an important
contributor to policy making but it may be no easier to achieve expert consensus for
a particular distribution of outcomes than it is to achieve consensus about a point
estimate.

Further, model-based quantitative uncertainty analysis cannot easily account
for uncertainty in processes that are so poorly understood that they are not well
represented in the models. For example, there is considerable evidence that there
can be abrupt collapses in the ocean’s thermohaline circulation (e.g., Higgins et al.,
2002.) No coupled GCM has yet shown such an abrupt change on the time scale
that we have considered, up to 2100, but the fact that these same models give very
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diverse projections for changes in the thermohaline circulation (Cubasch et al.,
2001) is evidence that our ability to model these processes is poor. Thus, similar to
many other assessment models, our modeling framework presented below does not
currently reproduce many of the abrupt state changes discussed in Higgins et al.
(2002). Such abrupt changes could certainly affect the probability distribution of
outcomes if they could be included (see e.g., distributions from experts nos. 2 and
4 in the elicitation by Morgan and Keith, 1995). As the state of the art in models
and representation of these mechanisms improves, their effects should be included
in uncertainty analyses.

2. Methods

We specifically consider uncertainty in: (1) anthropogenic emissions of greenhouse
gases [carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluoro-
carbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF6)]; (2) an-
thropogenic emissions of short-lived climate-relevant air pollutants [sulfur dioxide
(SO2), nitrogen oxides (NOx), carbon monoxide (CO), ammonia (NH3), black
carbon (BC), organic carbon (OC), and non-methane volatile organic compounds
(NMVOCs)]; (3) climate sensitivity (S); (4) oceanic heat uptake as measured by
an effective vertical ocean diffusivity (Kv); and (5) specific aerosol forcing (Faer).

We constrain uncertainty in climate model parameters to be consistent with
climate observations over much of the past century (Forest et al., 2002), and we
use uncertainty estimates in anthropogenic emissions (Webster et al., 2002) for
all relevant greenhouse gases (GHGs) and aerosol and GHG precursors as esti-
mated using the MIT Emissions Prediction and Policy Analysis (EPPA) model
(Babiker et al., 2000, 2001). These results (Webster et al., 2002; Forest et al.,
2002) provide input distributions that we use for the earth systems components
of the MIT Integrated Global System Model (IGSM) (Prinn et al., 1999; Reilly
et al., 1999), an earth system model of intermediate complexity (Claussen, 2002).
The MIT IGSM has been developed specifically to study uncertainty quantitatively.
It achieves this by retaining the necessary complexity to adequately represent the
feedbacks and interactions among earth systems and the flexibility to represent
the varying parameterizations of climate consistent with the historical data. At the
same time, it remains computationally efficient so that it is possible to make hun-
dreds of multi-century simulations in the course of a few months with a dedicated
parallel processing computer system. Using efficient sampling techniques, Latin
Hypercube sampling (Iman and Helton, 1998), a sample size of 250 is sufficient to
estimate probability distributions for climate outcomes of interest.
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2.1. STRUCTURE OF THE MIT IGSM

The MIT IGSM components include: (a) the EPPA model, designed to project
emissions of climate-relevant gases and the economic consequences of policies to
limit them (Babiker et al., 2000, 2001), (b) the climate model, a two-dimensional
(2D) zonally-averaged land-ocean (LO) resolving atmospheric model, coupled to
an atmospheric chemistry model, (c) a 2D ocean model consisting of a surface
mixed layer with specified meridional heat transport, diffusion of temperature
anomalies into the deep ocean, an ocean carbon component, and a thermodynamic
sea-ice model (Sokolov and Stone, 1998; Wang et al., 1998, 1999; Holian et al.,
2001), (d) the Terrestrial Ecosystem Model (TEM 4.1) (Melillo et al., 1993; Tian
et al., 1999), designed to simulate carbon and nitrogen dynamics of terrestrial
ecosystems, and (e) the Natural Emissions Model (NEM) that calculates natural
terrestrial fluxes of CH4 and N2O from soils and wetlands (Prinn et al., 1999; Liu,
1996).

The version of the MIT IGSM used here contains certain other unique and
important features. It incorporates a computationally efficient reduced-form urban
air chemistry model derived from an urban-scale air pollution model (Mayer et
al., 2000). Also, TEM is now fully coupled with the 2D-LO ocean-atmosphere-
chemistry model.� In previous simulations (Prinn et al., 1999; Reilly et al., 1999),
an iterative coupling procedure was performed to include the effect of climate
change on the carbon uptake by land ecosystems. The new fully integrated
version includes direct monthly interaction between the climate and ecosystem
components: the 2D-LO climate model provides monthly averaged temperature,
precipitation, and cloud cover and TEM returns the carbon uptake or release from
land for the month. The coupling of the zonally averaged 2D-LO climate model to
a latitude-longitude grid to drive TEM requires scaling the present-day longitudinal
distribution of climate data by the projected zonally averaged quantities, which has
been shown to work well as compared with input from three-dimensional models
(Xiao et al., 1997).

A simple representation of sea level change due to melting of mountain glaciers
has been incorporated into the IGSM. Change in the volume of glaciers from year
t0 to year t (expressed as the equivalent (expressed as the equivalent volume of
liquid water) is calculated as

dV =
∫ t

t0

Sg(t)

(
B0 + dB

dTg
�Tg(t)

)
dt,

where B0 is the rate of increase in global sea level due to melting of glaciers in
the year t0, dB/dTg is the sensitivity of this rate of increase to changes in global

� Anthropogenic emissions of greenhouse gases from human activities are treated parametrically
in the EPPA model. A version of the ecosystems model that includes human-induced land-use
change, including a mechanistic model of GHG emissions from land use is being developed for
future versions of the IGSM.
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average annual mean surface temperature, Tg, and Sg is the total glacial area. Sg in
a year t is calculated as

Sg(t) = Sg(t − 1) + dSg(t − 1),

dSg is assumed to be proportional to dV. Change in sea level is computed using the
total ocean surface area Ao as

dh = dV

Ao
.

In all our calculations we use year 1990 as t0. Values of B0 and dB/dTg,
0.4 mm/year and 0.61 mm/year/degree respectively, were derived from the pub-
lished results of transient climate change simulations with a number of coupled
atmosphere-ocean GCMs (Church et al., 2001). The differences in these parameters
as simulated by the different models were small compared to the uncertainty in
projections of changes in Tg associated with other uncertainties, such as climate
sensitivity. Thus by taking fixed values of these parameters, we are assuming that
the major uncertainty in dV is due to the uncertainty in dTg. This approach is a
simplified version of that used by Gregory and Oerlemans (1998).

2.2. UNCERTAINTY IN IGSM CLIMATE PARAMETERS

The century-scale response of the climate system to changes in the radiative forcing
is primarily controlled by two uncertain global properties of the climate system:
the climate sensitivity and the rate of oceanic heat uptake (Sokolov and Stone,
1998; Sokolov et al., 2003). In coupled Atmosphere-Ocean General Circulation
Models (AOGCMs) these two essentially structural properties are determined by
a large number of equations and parameters and cannot easily be changed. The
sensitivity, S, of the MIT climate model, however, can be easily varied by changing
the strength of the cloud feedback (i.e., we can mimic structural differences in
the AOGCMs). Mixing of heat into the deep ocean is parameterized in the MIT
model by an effective diffusion applied to a temperature difference from values in
a present-day climate simulation. Therefore, the rate of the oceanic heat uptake is
defined by the value of the globally averaged diffusion coefficient, Kv . By varying
these two parameters the MIT climate model can reproduce the global-scale zonal-
mean responses of different AOGCMs (Sokolov and Stone, 1998). Because of this
flexibility our results for these responses are not as model dependent as they would
be if we had used a single AOGCM for all of our analysis. There is also significant
uncertainty in the historical forcing mainly associated with uncertainty in the radia-
tive forcing in response to a given aerosol loading, Faer. Thus, in the MIT IGSM,
these three parameters (S, Kv , and Faer) are used to characterize both the response
of the climate system and the uncertainty in the historical climate forcing.

A particularly crucial aspect of our uncertainty work was estimating the joint
pdfs for the climate model parameters controlling S, Kv, and Faer. Previous work
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Table I

Fractiles of posterior marginal distributions for climate sensitivity, rate of heat
uptake by the deep ocean, and radiative forcing uncertainty from aerosols

Parameter Fractile

0.025 0.05 0.25 0.5 0.75 0.95 0.975

S (◦C) 1.3 1.4 1.95 2.38 2.96 4.2 4.7

Kv (cm2/s) 0.65 1.32 4.6 9.4 16.8 33.6 37.8

Faer (W/m2) –0.94 –0.88 –0.74 –0.65 –0.45 –0.25 –0.18

has used pdfs based on expert judgment or results from a set of climate models
(Hammit et al., 1992; Wigley and Raper, 2001; Titus and Narayan, 1995; Web-
ster and Sokolov, 2000). Our method uses observations of upper air, surface, and
deep-ocean temperatures for the 20th century to jointly constrain these climate
parameters, while including natural climate variability as a source of uncertainty
(Forest et al., 2002). The method for estimating pdfs relies on estimating goodness-
of-fit statistics, r2 (Forest et al., 2000, 2001, 2002), obtained from an optimal
fingerprint detection algorithm (Allen and Tett, 1999). Differences in r2 provide
a statistic that can be used in hypothesis testing, and thereby provide probability
estimates for parameter combinations (Forest et al., 2000, 2001). We compute r2

by taking the difference in the modeled and observed patterns of climate change
and weighting the difference by the inverse of the natural variability for the pat-
tern. This method requires an estimate of the natural variability (i.e., unforced)
for the climate system over very long periods. Ideally, observed climate variability
would be used but reconstructed data are not of sufficient accuracy. Our estimate
was obtained from long control runs of particular AOGCMs (Forest et al., 2002).
Estimates of the variability from other AOGCMs could change the results.

Starting with a prior pdf over the model parameter space, an estimate of the
posterior pdf is obtained by applying Bayes Theorem (Bayes, 1763), using each
diagnostic to estimate a likelihood function, and then each posterior becomes the
prior for the procedure using the next diagnostic. In the work presented here, expert
priors for both S and Kv were used (Webster and Sokolov, 2000), but sensitivity
to alternative assumptions will be presented.� Fractiles for the final posterior dis-
tributions used here for the climate model parameters are shown in Table I. The
three diagnostics are treated as independent observations and, therefore, weighted
equally in the Bayesian updating procedure.

� There is debate over whether and how to combine subjective probability distributions from
multiple experts for use in an uncertainty analysis; see, e.g., Titus and Narayanan (1996), Paté-
Cornell (1996), Keith (1996), and Genest and Zidek (1986).
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The result is a joint pdf for these three parameters with correlation among the
marginal pdfs (e.g., a high climate sensitivity is only consistent with observed tem-
perature under some combination of rapid heat uptake by the ocean and a strong
aerosol cooling effect). The pairwise correlation coefficients are 0.243 for S-Faer,
0.093 for Kv-Faer, and 0.004 for S-Kv ,

2.3. SPIN-UP OF CLIMATE MODEL IN MONTE CARLO EXPERIMENTS

A further issue in the Monte Carlo analysis is the so-called ‘spin-up’ of the IGSM
components required with different sampled values of changes in S, Kv , and Faer.
There is inertia in the ocean and carbon cycle models, as well as TEM, so that
one cannot start ‘cold’ from the year 2000 with different values for climate para-
meters. The computational requirements for running the full model starting from
pre-industrial times through 2100 for each of the 250 runs necessitated a two-stage
spin-up procedure. For the first stage, a simulation of the IGSM in spin-up mode
was carried out with reference values for S, Kv , and Faer for the period Jan. 1,
1860 to Jan. 1, 1927. In this mode, the climate model uses estimated historical
forcings while the ocean carbon-cycle model (OCM) and TEM are forced by ob-
served changes in CO2 concentrations and the climate variables as simulated by
the climate model. Carbon uptake by the OCM and TEM are not fed back to the
climate model in this stage. The model states in 1927 for the climate model and
TEM from this run were saved and then used as initial conditions for the second
spin-up stage with the different sets of model parameters sampled in the Monte
Carlo analysis. During this second stage the IGSM was run in the same mode as the
first stage from Jan. 1, 1927 to Jan. 1, 1977, but using the different sampled values
for the climate parameters. Given the inertia in the OCM, that model component
was run from 1860 in all simulations and the required climate data up to 1927 were
taken from the climate simulation for reference parameter values. Test runs of the
full IGSM spun-up from 1860 using extreme values of the uncertain parameters
were compared with results from this shortened spin-up procedure and showed
no noticeable difference in the simulation results by 1977, confirming that this
shortened spin-up period would not affect projections of future climate.

The full version of the IGSM was then run beginning from Jan. 1, 1977 using
historical anthropogenic emissions of GHGs and other pollutants through 1997 and
predicted emissions for 1998 through 2100. During this stage of the simulations all
IGSM components are fully interactive: carbon uptake by the OCM and TEM are
used in the atmospheric chemistry model and soil carbon changes simulated by
TEM are used in NEM. Concentrations of all gases and aerosols as well as asso-
ciated radiative forcings are calculated endogenously. The atmospheric chemistry
model and NEM components use the same initial conditions for 1977 in all simu-
lations. Short-lived species do not require a long spin-up period because they have
relatively little inertia, while the long-lived species, including CO2, N2O, CH4, and
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CFCs, have been prescribed during spin-up and are restricted to observations over
1977–1997.

The 1977 to 1997 period provides additional information on the consistency
of the ocean and terrestrial carbon uptake. Given data on anthropogenic emissions
and actual atmospheric concentrations, total carbon uptake by the ocean and ter-
restrial systems can be estimated to have averaged 4.3 TgC/year during the 1980s.
Carbon uptake by the ocean strongly depends on the values of climate parameters,
especially Kv . Across the 250 runs, the implied distribution for oceanic carbon
uptake averaged over the 1980s has a mean of 2.1 TgC/year with 95% bounds
of 0.9 and 3.2 TgC/year. This distribution is quite similar to results from a more
complete treatment of uncertainty in the OCM (Holian et al., 2001). Because we
do not treat uncertainty in TEM for this study, carbon uptake by the terrestrial eco-
system shows too little variance. Thus for every sample parameter set, we calculate
an additional sink/source needed to balance the carbon cycle for the decade 1980–
1989, and retain this sink/source as a constant addition for each individual through
the year 2100.

During the spin-up phase, as described in Forest et al. (2001), aerosol forcing
is parameterized by a change in surface albedo and depends on historical SO2

emissions and a scattering coefficient that sets the forcing level in response to
the prescribed aerosol loading. In each simulation, this coefficient is used to set
the sampled value of Faer. In the period beyond 1977 using the full version of the
IGSM, the sampled value of Faer is now a function of the aerosol optical depth
multiplier and the initial SO2 emission. Based on the results of preliminary simu-
lations, the following formula was obtained for the aerosol optical depth multiplier
Cf (see Table 6 in Forest et al., 2001):

Cf = A ∗ F (1+x)
aer /E(1+y),

where E is the global SO2 emissions, x = 0.035 and y = 0.0391 and the value
of A was defined from a reference simulation. The dependence on the initial SO2

emissions reflects uncertainty in the present day aerosol loading. We use the aerosol
optical depth multiplier to provide the sampled value of Faer. Thus, the choice of
parameters in each period of the simulation ensures a smooth transition in the net
forcing between different stages of the run as well as consistency with the historical
climate record.

2.4. DATA FOR PARAMETER DISTRIBUTIONS

The critical input data for uncertainty analyses are the probability distribution
functions (pdfs) for the uncertain parameters. A key error frequently made in
assembling such pdfs is to use the distribution of point estimates drawn from
the literature rather than from estimates of uncertainty (e.g., standard deviation)
itself. Examples of such errors are estimates of future emissions uncertainty based
on literature surveys of emissions projections, or estimates of uncertainty in cli-
mate sensitivity based on their distribution from existing climate models. There is
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nothing inherently wrong with using literature estimates, but the point estimates
of uncertain parameters should span the population of interest and not simply a
distribution of mean estimates from different studies.

There can be a variety of problems with using literature estimates. For example,
the distribution of emissions scenarios based on a literature review showed max-
imum probability at the level of one of the central emissions scenarios produced
by the second assessment report of the IPCC (Houghton et al., 1996). However,
subsequent evaluation of the same literature (Nakicenovic et al., 1998) indicates
that many analysts simply adopted this scenario as a convenient reference to con-
duct a policy study, rather than to conduct a new and independent forecast of
emissions. The frequent reappearance of this estimate in the literature should not
be interpreted as indicating a particular judgment that the scenario was much more
likely than others. Similarly, the fact that the IPCC scenarios span the range in
the literature provides no evidence of whether they describe uncertainty in future
emissions, although recent analyses (Wigley and Raper, 2001) have attempted to
interpret them as such. Basing the distribution of climate sensitivity on the distri-
bution of estimates from a set of climate models makes a similar mistake. There
is no reason to expect that the climate sensitivities in this set of models provide
an unbiased estimate of either the mean or the variance, because some models are
simply slight variants, or use parameterizations similar to those in other models.
But, just because one parent model has given rise to more models does not mean
that the sensitivities of this group of models should be weighted more than another
model – more versions does not make it more likely to be correct. The goal is to
perform internally-consistent uncertainty analysis to understand the likelihood of
different outcomes.

2.5. ANTHROPOGENIC EMISSIONS PROBABILITY DENSITY FUNCTIONS

Uncertainties in anthropogenic emissions were determined using a Monte Carlo
analysis of the MIT EPPA model, which is a computable general equilibrium model
of the world economy with sectoral and regional detail (Babiker et al., 2000, 2001).
As emissions projections for all substances are derived from a single economic
model, the projections are self-consistent with the economic activity projections.
The correlation structure among emissions forecasts reflects the structure of the
model. Specifically, because energy production and agriculture are simultaneous
sources of many GHGs and air pollutants, there is a strong correlation among
emissions of the various gases and aerosols (Webster et al., 2002). An approach
that used different models for different sets of emissions might erroneously treat
the distributions of emissions as independent. We used an efficient and accurate
method for sampling the input parameter space to produce a reduced form (re-
sponse surface) model (Tatang et al., 1997) of the underlying EPPA model. A full
Monte Carlo analysis is then conducted using the response surface model.
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Based on sensitivity analysis of the EPPA model, a limited set of EPPA input
parameters was identified for uncertainty treatment. These were: labor productivity
growth; autonomous energy efficiency improvement (AEEI); factors for emissions
per unit of economic activity for agricultural and industrial sources of CH4 and
N2O; factors for emissions per unit of economic activity in fossil fuel, agricul-
tural and industrial sources of SO2, NOx , CO, NMVOC, BC, OC, and NH3; and
emissions growth trends for HFCs, PFCs, and SF6. The underlying distributions
were based on a combination of expert elicitation of the distributions (labor pro-
ductivity and AEEI), on estimates of uncertainty in emission coefficients from
the literature (i.e., not a distribution of point estimates), and statistical analysis of
cross-section dependence of emissions per unit of economic activity on per capita
income. Thus, we account for the uncertainty in today’s global emissions, as well
as the uncertainty in how quickly different economies around the globe will reduce
pollutants as their wealth increases. Many derivative factors traditionally treated
as uncertain parameters, such as energy prices, introduction of new technologies,
sectoral growth, and resource exhaustion, are endogenously calculated in EPPA.
The projections of these economic processes (and thus emissions from different
activities) are uncertain but that uncertainty derives from the more fundamental
uncertainty in productivity growth and energy efficiency and from the structure of
the model.

2.6. LATIN HYPERCUBE SAMPLING UNCERTAINTY ANALYSIS

Sampling from the probability distributions for the uncertainty analysis is per-
formed using Latin Hypercube Sampling (LHS) (Iman and Helton, 1988). LHS
divides each parameter distribution into n segments of equal probability, where
n is the number of samples to be generated. Sampling without replacement is
performed so that with n samples every segment is used once. Samples for the
climate parameters are generated from the marginal pdfs, and the correlation struc-
ture among the three climate model parameters is imposed (Iman and Conover,
1982). This ensures that the low probability combinations of parameters are not
over-represented, as would be the case if the correlations were neglected.

We conducted two LHS uncertainty analyses for the period 1860–2100, in both
cases using n = 250. One analysis included uncertainty in climate variables and
emissions in the absence of policy. The second analysis restricted the emissions
path for greenhouse gases, by assuming a policy constraint. The policy scenario
chosen was one used in previous work (Reilly et al., 1999), which comes close
to a 550 ppm stabilization case for reference climate model parameter values. It
assumes that the Kyoto Protocol caps are implemented in 2010 in all countries
that agreed to caps in the original protocol (i.e., including the United States even
though the U.S. has indicated it will not ratify the protocol) (United Nations, 1997).
The policy scenario also assumes that the Kyoto emissions cap is further lowered
by 5% every 15 years so that by 2100 emissions of all greenhouse gases in all
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countries under the original Kyoto cap are 35% below 1990 levels. With regard
to countries not capped by the Kyoto Protocol, the policy scenario assumes that
they take on a cap in 2025 with emissions 5% below their (unconstrained) 2010
emissions levels. The cap is then reduced by 5% every 15 years thereafter so that
these countries are 30% below their 2010 emissions by 2100. Because we assume
no uncertainty in these caps, the emissions uncertainty is greatly reduced. Some
emissions uncertainty remains, however, because there is no cap on any nation
until 2010 and the cap for the developing countries is started even later and depends
on their uncertain 2010 emissions. This cap is only applied to CO2, and does not
explicitly constrain other greenhouse gases or air pollutants, but because of the
correlation between sources captured in the structure of the model, there will be
some corresponding reduction in these other emissions as well.

3. Results and Discussion

3.1. ANALYSIS OF UNCERTAINTY WITH AND WITHOUT POLICY

In the absence of any climate policy, we find that the 95% bounds on annual CO2

emissions by 2100 are 7 to 38 GtC/yr−1 with a mean of 19 GtC/yr−1. This range is
similar to that of the six SRES marker scenarios. However by explicitly providing
the probability distribution, we reduce the chances that someone would incorrectly
assume that scenarios resulting in 7 and 38 GtC/yr−1 are as likely as those that
result in 19 GtC/yr−1.

The biggest difference between our emissions distributions and the SRES (Na-
kicenovic et al., 2000) scenarios are for SO2 projections. First, unlike the IPCC
analysis, we consider the uncertainty in current annual global emissions, which is
substantial: 95% bounds of 20 to 105 TgS/yr−1 with a mean of 58 TgS/yr−1 in
1995 (Olivier et al., 1995; Van Aardenne et al., 2001). Secondly, we consider the
uncertainty in future SO2 emissions controls. In all six of the SRES marker scenar-
ios reported in the IPCC TAR, SO2 emissions begin to steadily decline after about
2040. Thus, all these SRES scenarios assume that policies will be implemented to
reduce sulfur emissions, even in developing countries, for all imaginable futures.
In contrast, our study assumes that the ability or willingness to implement sulfur
emissions reduction policies is one of the key uncertainties in these projections.
Accordingly, our 95% probability range by 2100, 20 to 230 TgS/yr−1 with a mean
of 100 TgS/yr−1, includes the possibility of continuing increases in SO2 emissions
over the next century, or of declining emissions consistent with SRES. Neither
extreme is considered as likely as a level similar to today’s emissions. A large
part of our uncertainty in SO2 emissions can be traced to the fact that we are
uncertain about current emissions. While there are many inventories of emissions
by governments that purport to track emissions of pollutants, the apparent accu-
racy suggested by them does not reflect the underlying problems in measurement



308 MORT WEBSTER ET AL.

Figure 1.



UNCERTAINTY ANALYSIS OF CLIMATE CHANGE AND POLICY RESPONSE 309

or lack of comprehensive measurement of all sources. Thus emissions estimates
often cannot be easily and accurately reconciled with observed pollutant levels. In
considering emissions uncertainty, in contrast to the SRES approach, it is therefore
essential to evaluate uncertainty in current emissions where that is important as
well as in factors that affect growth in emissions.

The stringent policy causes the median CO2 concentration in 2100 to be nearly
200 ppm lower (Figure 1A), the median radiative forcing to be about 2.5 Wm−2

lower (Figure 1B), and the global mean temperature to be about 1.0 ◦C lower (Fig-
ure 1C) than in the no policy case. The policy reduces the 95% upper bound for the
increase in temperature change by 2 ◦C (from 4.9 to 3.2 ◦C).

We estimate probability distributions (Figure 2) for global mean temperature
change, sea level rise, and carbon uptake by the terrestrial biosphere. For each
model output, the cumulative distribution (CDF) of the 250 results is fit to an an-
alytical distribution that minimizes the squared differences between the empirical
and analytical CDFs. The comparison between the empirical and analytical distri-
butions is shown only for temperature change in 2100 with no policy (Figure 2A)
to illustrate the approximate nature of the fits and the caution needed in evaluating
small probability regions (e.g., the tails of the distribution). Without policy, our
estimated mean for the global mean surface temperature increase is 1.1 ◦C in 2050
and 2.4 ◦C in 2100. The corresponding means for the policy case are 0.93 ◦C in
2050 and 1.7 ◦C in 2100. The mean outcomes tend to be somewhat higher than the
modes of the distribution, reflecting the skewed distribution – the mean outcome
of the Monte Carlo analysis is higher than if one were to run a single scenario
with mean estimates from all the parameter distributions. One can also contrast
the distribution for the no policy case with the IPCC range for 2100 of 1.4 to
5.8 ◦C (Houghton et al., 2001). Although the IPCC provided no estimate of the
probability of this range, our 95% probability range for 2100 is 1.0 to 4.9 ◦C. So,
while the width of the IPCC range turns out to be very similar to our estimate of
a 95% confidence limit, both their lower and upper bounds are somewhat higher.
When compared to our no-policy case, our policy case produces a narrower pdf and
lower mean value for the 1990–2100 warming (Figure 2B). But, even with the re-
duced emissions uncertainty in the policy case, the climate outcomes are still quite
uncertain. There remains a one in forty chance that temperatures in 2100 could be
greater than 3.2 ◦C and a one in seven chance that temperatures could rise by more
than 2.4 ◦C, which is the mean of our no policy case. Hence, climate policies can
reduce the risks of large increases in global temperature, but they cannot eliminate
the risk.

Figure 1 (facing page). Projected changes in (A) atmospheric CO2 concentrations, (B) radiative
forcing change from 1990 due to all greenhouse gases, and (C) global mean surface temperature from
1990. The solid red lines are the lower 95%, median, and upper 95% in the absence of greenhouse
gas restrictions, and the dashed blue lines are the lower 95%, median, and upper 95% under a policy
that approximately stabilizes CO2 concentrations at 550 ppm.
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We also report uncertainty in sea level rise due to thermal expansion of the ocean
and melting of glacial ice (Figure 2C). These two processes are expected to be the
primary sources of sea level rise over the next century,� and the policy reduces the
95% upper bound for sea level rise by 21 cm (from 84 cm to 63 cm).�� Finally, the
uptake of carbon into the terrestrial biosphere (Figure 2D) is much more uncertain
and has higher mean values in the no policy case than in the policy case, due to the
larger and continual increases in atmospheric CO2 concentrations in the no policy
case (Figure 1A).

As changes in surface temperature will not be uniform across the surface of the
earth, it is useful to examine the dependence of projected temperatures on latitude
(Figure 3). As in all current AOGCMs, the warming at high latitudes, as well as
the uncertainty associated with this warming, is significantly greater than in the
tropics, and the 95% upper bound warming with no policy is quite substantial in
the high latitudes: there is a one in forty chance that warming will exceed 8 ◦C in
the southern high latitudes and 12 ◦C in the north.

3.2. ROBUSTNESS OF RESULTS

To test the robustness of the results, we propagated a second set of probability dis-
tributions for the uncertain climate parameters. Instead of beginning with prior pdfs
from expert judgment and using the observation-based diagnostics to constrain the
pdfs, we begin with uniform priors (i.e., equal likelihood over all parameter values)
and then constrain based on observations. This results in a joint pdf with greater
variance, and is the pdf described in Forest et al. (2002). The resulting uncertainty
in temperature change by 2100 is somewhat greater: the 95% probability bounds
are 0.8◦ to 5.5 ◦C (Figure 4A). A larger increase in uncertainty is seen in sea level

Figure 2 (facing page). Cumulative probability distribution of 250 simulated global mean surface
temperature change compared with fitted analytical probability distribution (A), and probability
density functions for global mean surface temperature change (B), sea level rise from thermal ex-
pansion and glacial melting (C), and carbon uptake by the terrestrial biosphere (D) for 2050 and
2100. Solid red lines show distributions resulting from no emissions restrictions and dashed blue
lines are distributions under the sample policy.

� We exclude contributions from the Greenland and Antarctic ice sheets, but most studies indicate
these would have a negligible contribution in the next century (IPCC, 2001; Bugnion, 2000).

�� For cases of stabilization such as these, one observes about 70% of equilibrium warming by the
time stabilization occurs, and the remaining 30% would be realized gradually over the next 200 to
500 years. Sea level rise takes even longer to equilibrate: at the time of stabilization one sees only
about 10% of the ultimate equilibrium rise, with the remaining 90% occurring over the next 500 to
1000 years. Climate ‘equilibrium’ is, itself, a troublesome concept as there is natural variation in
climate that takes place on many different time scales. And, stabilization is at best an approximate
concept (Jacoby et al., 1996).
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rise due to thermal expansion: the upper 95% bound increases from 83 cm to 87 cm
and the probability that sea level rise will exceed 50 cm by 2100 increases from
32% to 49% (Figure 4B). This is largely due to the inability of the climate change
diagnostics to constrain the uncertainty in rapid heat uptake by the deep ocean
(Forest et al., 2002).

3.3. COMPARISON TO OTHER APPROACHES

Using results from model comparisons to describe uncertainty will tend to un-
derestimate the variance in climate outcomes. As an illustration, we compare the
transient climate response (TCR), which is defined as the change in global mean
temperature at the time of CO2 concentration doubling with a 1%/yr increase in
CO2 atmospheric concentrations, for the models given in Table 9.1 of the TAR
(Cubasch et al., 2001) to the pdf of the TCR from the MIT IGSM (Figure 5). The
pdf for the MIT model is calculated by propagating the distributions for climate
sensitivity and heat uptake by the deep ocean through a reduced-form approxi-
mation of the MIT model response (Webster and Sokolov, 2000). For the IPCC
model results, Figure 5 shows an empirical pdf, obtained by dividing the 19 TCR
values given in Table 9.1 into 10 equally spaced intervals, and also an analytical
distribution fit to the CDF of the empirical values. The central tendency of IPCC
estimates is similar to what we have simulated but they exhibit a stronger peak
and an overall narrower distribution. This supports the interpretation of the various
model results as estimates of the mean or central tendency, and demonstrates that
the distribution of the estimates of the mean will tend to underestimate the variance
of the distribution.

Further research and observation may be able to resolve uncertainty in the
science but much of the uncertainty in future anthropogenic emissions may be
irreducible. Thus, another useful exercise is to understand the relative contributions
of uncertainty in emissions and in the physical science. To examine the relative
contribution of emissions and climate uncertainty, we use a reduced-form version
(Sokolov et al., 2003) of our climate model to generate pdfs of temperature change
by Monte Carlo analysis (Figure 6) based first on the uncertainty in the climate
parameters alone with emissions fixed to reference (median) values, and second
based on uncertainty in emissions alone with climate parameters fixed. Although

Facing page

Figure 3. The lower 95%, median, and upper 95% change in surface warming by latitude band
between 1990 and 2100. Solid red lines show distributions resulting from no emissions restrictions
and dashed blue lines are distributions under the sample policy.

Figure 4. Probability distributions for global mean temperature change (A) and sea level rise from
thermal expansion (B) 1990–2100. Solid red lines show results from joint pdf of climate parame-
ters where observations constrain expert judgment priors, and dashed blue lines show results where
observations constrain uniform priors.



314 MORT WEBSTER ET AL.



UNCERTAINTY ANALYSIS OF CLIMATE CHANGE AND POLICY RESPONSE 315

the mean values are similar, the variance in 2100 of either subset of uncertainties
is substantially less; the standard deviation is 1.18 ◦C for all uncertainties, 0.69 ◦C
for climate uncertainties only, and 0.76 ◦C for emissions uncertainties only. The
probability that global mean surface warming would exceed 4 ◦C is 8.4% for the
full study, but only 1.2% for climate uncertainties alone and 0.6% for emissions
uncertainties alone. Either of the smaller sets would understate the risk of extreme
warming as we understand the science of climate change today. If it were possible
to significantly resolve climate science over the next few years, about one-third of
the uncertainty, as measured by the standard deviation, could be reduced. Reducing
the odds of serious climate change thus requires both improved scientific research
and policies that control emissions.

Because the climate model parameters can be chosen such that the model re-
produces the global scale zonal-mean transient results of a particular AOGCM
(Sokolov et al., 2003), we can repeat the above experiment choosing parameter
settings corresponding to specific AOGCMs. Three such cases, for GFDL_R15,
HadCM3, and NCAR CSM, have been chosen because they represent a wide range
of climate change results simulated by AOGCMs (Sokolov et al., 2003). To sim-
ulate such results, we first derive the conditional pdf of aerosol forcing from our
constrained joint pdf of climate parameters, conditioned on the values of S and
Kv that match the IGSM to a particular model (Figure 7A). We then draw 250
Latin Hypercube samples from the conditional aerosol pdf and use the original
250 samples of all emissions parameters. Finally, because of computation time
considerations, we perform the Monte Carlo on a reduced-form model fit to the
IGSM. The reduced-form model is a 3rd-order response surface fit based on the
500 runs of the IGSM (presented above) and has an R2 of 0.97.

The simulated pdfs for surface warming 1990–2100 from these models (Fig-
ure 7B) indicate that any single AOGCM will have less variance in temperature
change than a complete treatment of the uncertainty, not surprisingly, considering
that the sensitivity and heat uptake are fixed. The mean estimates of temperature
change for the models are ordered as one would expect given the climate para-
meter values that allow us to reproduce them with the MIT IGSM. In particular,
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Figure 5. Probability distributions for global mean temperature change at the time of CO2 doubling
with concentrations increasing at 1% per year in the MIT IGSM (no policy case) and for the range
of model results summarized in Table 9 of the IPCC TAR.

Figure 6. Pdfs of global mean surface temperature change 1990–2100 from all uncertain parameters
(black), only climate model parameters uncertain and emissions fixed (red), and only emissions
uncertain with climate model parameters fixed.
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Figure 7. (A) The marginal pdf (black) for aerosol forcing along with three conditional pdfs, each
derived from our joint distribution of climate parameters assuming the values for S and Kv that
match the MIT IGSM results to GFDL R15 (red), HadCM3 (green), and NCAR CSM (blue). (B) Re-
sulting pdfs of global mean surface temperature change 1990–2100 from the conditional aerosol
distributions, the same emissions distributions, and fixed S and Kv .
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the HadCM3 and GFDL models have a higher mean for their distribution of tem-
perature change than the NCAR model, with the NCAR mean near the mean of the
full distribution but with smaller variance.

4. Conclusions

The Third Assessment Report of the Intergovernmental Panel on Climate Change
strove to quantify the uncertainties in the reported findings, but was limited in what
could be said for future climate projections given the lack of published estimates.
This study is a contribution to help fill that gap in the literature, providing prob-
ability distributions of future climate projections based on current uncertainty in
underlying scientific and socioeconomic parameters, and for two possible policies
over time. In reality, there will be the possibility to adapt climate policy over time
as, through research and observation, we learn which outcomes are more likely.
But decisions today can only be based on the information we have today. The work
presented here is one attempt to bring together current knowledge on science and
economics to understand the likelihood of future climate outcomes as we under-
stand the science and economics today. A necessary part of the research on climate
change is to repeat this type of analysis as our understanding improves so that we
can better understand the policy relevance of these scientific advances.

As with all investigations of complex and only partially understood systems, the
results presented here must be treated with appropriate caution. Current knowledge
of the stability of the great ice sheets, stability of thermohaline circulation, ecosys-
tem transition dynamics, climate-severe storm connections, future technological
innovation, human population dynamics, and political change, among other rel-
evant processes, is limited. Therefore abrupt-changes or ‘surprises’ not currently
evident from model studies, including our uncertainty studies summarized here,
may occur.

While our approach allows us to simulate climate responses over a range of
different structural assumptions in 3D models, other structural features of our mod-
eling system are fixed for this analysis even though alternative assumptions are also
possible. We hope that uncertainty studies of other climate models will soon follow,
making use of ever-increasing processor speeds, efficient sampling techniques, and
reduced-form models to make uncertainty analyses feasible on even larger models
that require more computational time.
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