

Background of Recent SFA Pacific H₂ & CO₂ Mitigation Related Projects & Presentations

Private industry sponsored analyses

- Major private Multisponsored analyses of H₂, syngas & gas-to-liquids
- Major private Multisponsored analysis of CO₂ mitigation options
- CO₂ capture & storage analysis for the BP led CO₂ Capture Project (CCP) & the TransAlta led Canadian Clean Power Coalition (CCPC)
- H₂ production & infrastructure costs for major auto & oil companies
- Lead author on H₂ for the CO₂ capture section of the special IPCC report on geologic storage of CO₂

Most of our H₂ & CO₂ work is for industrial energy companies

SFA Pacific, Inc.

Background - Why Hydrogen as a Fuel?

Hydrogen is the most abundant element in the universe

When used as a fuel H_2 produces only clean energy & H_2O

Energy futurists see a logical progression from wood to coal to oil to NG to H_2 as standard of living & technologies improve

• Each fuel switch is cleaner, more efficient & lower in CO₂ emissions

Energy futurists also like H₂ from sustainable renewables

• However, H₂ from fossil fuels is cheaper until the fossil fuel age peaks in 50-100 years making fossil fuels increasingly more expensive

The hydrogen economy concept is quite interesting, long-term

 However, the short-term challenge is developing a hydrogen infrastructure while H₂ from fossil fuels is cheaper than renewables

SFA Pacific, Inc.

Fuel Cells and CO₂ Emissions Avoidance: The Key Drivers for the Hydrogen Economy

Fuel cells are unique in their direct conversion of chemical energy to electricity at low temperature & can be reversible

• However, exploiting these exciting attributes of fuel cells hinges on developing cost effective H_2 production & H_2 infrastructure

The global warming issue is likely the essential bridge to begin developing the long-term hydrogen economy

• Assuming global warming becomes a serious problem & we have the "stomach" to address the honest costs of effective CO₂ mitigation

Although H_2 from renewables is "politically" more correct & essential for the long-term, it is likely more economical to make H_2 from fossil fuels even with CO₂ capture & storage in the short-term

SFA Pacific, Inc.

SFA Pacific, Inc.

Hydrogen is Already a Large, Commercially Well Proven Industry

World commercial H_2 production is currently >40 billion scf/d

• Equivalent to 133,000 MW_t or 75,000 MW_e if converted to electricity

Most H_2 is made from natural gas via steam methane reforming however, 15% is from more capital intensive gasification

H₂ transportation & storage depends on amount & distance

- Pipelines for big users worldwide over 10,000 miles with many in the U.S., longest is 250 miles from Antwerp to Normandy @ 100 atm.
- Liquid hydrogen for moderate users used through out California
- High pressure tube trailers for small users used through out the world

Many H₂ advocates are unaware of this impressive experience

Farmland in Kansas - Commercial (no subsidies) Coke to H₂ Gasification Plant for Ammonia & CO₂

Hydrogen Production & Distribution Basic Challenges & Issues

Classic "chicken and egg" or "big bang" ramp-up issue

- Previous H₂ costs assuming 90% annual load factors which will thereby support about 225,000 FCV
 - How many years will it take of one region to ramp-up to this small level?
 - All FCV could not go to just 1 or 2 onsite station during regional ramp-up
 - Low annual load factors for 5-10 years could double capital charges

Basic Challenges

- NFPA 50 A&B H₂ fire codes are onerous many expenses & limitations
- Renewable wind turbine or PV based H₂ is very expensive due to low annual load factors & having to utilize electrolysis @ same low load
- Biomass gasification H₂ is expensive due to high fuel cost, challenges to make N₂-free, pure H₂ (not N₂-rich CH₄) & lack of economy of scale

SFA Pacific, Inc.

