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Probabilistic Integrated
Assessment of “Dangerous”
Climate Change
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Climate policy decisions are being made despite layers of uncertainty. Such de-
cisions directly influence the potential for “dangerous anthropogenic interference
with the climate system.” We mapped a metric for this concept, based on Inter-
governmental Panel on Climate Change assessment of climate impacts, onto
probability distributions of future climate change produced from uncertainty in key
parameters of the coupled social-natural system—climate sensitivity, climate
damages, and discount rate. Analyses with a simple integrated assessment model
found that, under midrange assumptions, endogenously calculated, optimal climate
policy controls can reduce the probability of dangerous anthropogenic interference
from ~45% under minimal controls to near zero.

Article 2 of the United Nations Framework Con-
vention on Climate Change (UNFCCC) states its
ultimate objective as “Stabilization of green-
house gas concentrations in the atmosphere at a
level that would prevent dangerous anthro-
pogenic interference with the climate system”
(7). This level should be achieved within a time
frame sufficient to allow ecosystems to adapt
naturally to climate change, to ensure that food
production is not threatened, and to enable eco-
nomic development to proceed in a sustainable
manner. Thus, the criteria for identifying “dan-
gerous anthropogenic interference” (DAI) may
be characterized in terms of the consequences (or
impacts) of climate change (2). Although these
impacts, and a precise definition of DAI, are
subject to considerable uncertainty, a plausible
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uncertainty range can be quantified from current
scientific knowledge (3). We argue that climate
change policy decisions should be conceptual-
ized in terms of preventing or reducing the
probability of DAI, a risk-management frame-
work familiar to policymakers and an outcome
to which more than 190 signatories to the
UNFCCC have committed.

Research related to global climate change
must deal explicitly with uncertainty about fu-
ture climate impacts. Due to the complexity of
the climate change issue and its relevance to
international policymaking, careful consider-
ation and presentation of uncertainty is impor-
tant when communicating scientific results (2,
4-7). Policy analysis regarding climate change
necessarily requires decision-making under un-
certainty (8—10). Without explicit efforts to
quantify the likelihood of future events, users of
scientific results (including policy-makers) will
undoubtedly make their own assumptions about
the probability of different outcomes, possibly
in ways that the original authors did not intend
(11, 12).
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Assigning likelihoods to potential future
worlds is difficult, as noted by Griibler and
Nakicenovic (/3), because any such esti-
mates will be highly subjective and based on
assessments of future societal behavior and
values. Uncertainty, they warn, may alterna-
tively be dismissed or replaced by spurious
expert opinion. Although the suitability and
effectiveness of techniques for presenting un-
certain results is context-dependent, we be-
lieve that such probabilistic methods are
more valuable for communicating an accurate
view of current scientific knowledge to those
seeking information for decision-making than
assessments that do not attempt to present
results in probabilistic frameworks (/4).

We present a metric for assessing DAI: a
cumulative density function (CDF) of the
threshold for dangerous climate change. We
demonstrate its utility by applying it to modeled
uncertainty in future climate change using an
optimizing integrated assessment model (IAM).
[IAMs are common policy analysis tools that
couple submodels of the climate and economic
systems, balance costs and benefits of climate
change mitigation to determine an “optimal”
policy (15), and often exhibit properties not
apparent in either submodel alone (/6).

We chose Nordhaus’ Dynamic Integrated
Climate and Economy (DICE) model (/7) for
our analysis because of its relative simplicity
and transparency, despite its limitations (/6,
18). The IAM framework allows us to ex-
plore the effect of a wide range of mitigation
levels on the potential for exceeding a policy-
important threshold such as DAI. We do not
recommend that our quantitative results be
taken literally, but we suggest that our prob-
abilistic framework and methods be taken
seriously. They produce general conclusions
that are more robust than estimates made with
a limited set of scenarios or without probabi-
listic presentations of outcomes, and our
threshold metric for DAI offers a risk-man-
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agement framework for discussion of future
climate change that can be applied to results
at all levels of model complexity.

To define our metric for DAI, we esti-
mated a CDF based on the Intergovernmen-
tal Panel on Climate Change (IPCC) “Rea-
sons for Concern” (3) (Fig. 1). Each col-
umn in the figure represents a reason for
concern about climate change in this cen-
tury, on the basis of dozens of IPCC lead
authors’ examination of climate impacts
literature, thus representing a consensus es-
timate of DAI. We constructed our CDF by
assigning data points at the threshold tem-
perature above which each column be-
comes red (Fig. 1, solid black line) and as-
sumed that the probability of DAI increases
cumulatively at each threshold temperature by a
quintile, making the first threshold the 20th
percentile (20%o) (19). This CDF is a starting
point for our analysis of DAI; it facilitates a
concrete sensitivity analysis at various thresh-
olds of dangerous climate change. The median,
50%o threshold for DAI in Fig. 1, DAI[50%o], is
2.85°C (20).

Reasons for concern
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Fig. 1. An adaptation of the IPCC Reasons for
Concern figure (3), with the thresholds used to
generate our CDF for DAI. The IPCC figure con-
ceptualizes five reasons for concern, mapped
against climate change through 2100. As temper-
ature increases, colors become redder: White in-
dicates neutral or small negative or positive im-
pacts or risks, yellow indicates negative impacts
for some systems, and red means negative im-
pacts or risks that are more widespread and/or
greater in magnitude. The risks of adverse im-
pacts from climate change increase with the
magnitude of change, involving more of the rea-
sons for concern. For simplicity, we use the
transition-to-red thresholds for each reason for
concern to construct a CDF for DAI, assuming
the probability of DAl increases by a quintile as
each threshold is reached (79).

We applied this metric for DAI to a spec-
trum of results based on uncertainty in three key
social and natural model parameters—climate
sensitivity, climate damages, and discount rate.
We focused on these parameters because they
are critical determinants of the policy implica-
tions of global climate change. Climate sensi-
tivity—the equilibrium surface temperature in-
crease from a doubling of atmospheric CO,—
determines the magnitude of anthropogenic
temperature change from a given radiative forc-
ing. The impact of this change is determined by
the severity of climate damages from a given
global average temperature change, usually re-
ported as a loss of gross economic product.
Both factors cannot be determined with high
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confidence because of the complexity of the
system, missing data, and competing frame-
works for analysis (27). In an [AM, future costs
and benefits are compared by discounting their
future value at some discount rate. Modeled
policy responses to global climate change,
where mitigation costs come long before size-
able benefits from avoided climate damages,
are very sensitive to this rate. Sensitivity anal-
ysis, where uncertain parameters are varied
across a likely range of values, is often used to
identify and report ranges of uncertainty. When
it is possible to define a probability distribution
for the uncertain parameter(s), a second meth-
od—Monte Carlo (MC) analysis—can expand
on a sensitivity analysis by assigning a proba-
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Fig. 2. (A) Probability distributions for each climate sensitivity distribution for the climate
sensitivity—only MC analyses with zero damages and 0% PRTP (a ~1% discount rate). (B)
Probability distributions for the joint (climate sensitivity and climate damage) MC analyses. All
distributions display a 3-bin running mean and the percentage of outcomes above our median
threshold of 2.85°C for dangerous climate change, P{DAI[50%o]}. The joint distributions display
carbon taxes calculated in 2050 (T,50) by the DICE model, using the median climate sensitivity
from each climate sensitivity distribution and the median climate damage function for the joint
Monte Carlo cases (79). When we compare the joint cases with climate policy controls (B) to the
climate sensitivity—only cases without climate policy controls (A), sufficient carbon taxes reduce
the potential (significantly in two out of three cases) for DAI[50%so].
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bility distribution to model outcomes run as the
parameter is varied. We combined both tech-
niques to evaluate the potential for DAI (79).

Using general circulation models, the
IPCC has long estimated the climate sensitiv-
ity to lie somewhere between 1.5°C and
4.5°C (22), without indicating the relative
probability within this range. Other analyses
produce both higher and lower values (79).
Recent studies produce distributions wider
than the IPCC range, with significant proba-
bility of climate sensitivity above 4.5°C. We
used three such probability distributions: the
combined distribution from Andronova and
Schlesinger (A&S) (23), and the expert prior
(F Expert) and uniform prior (F Uniform)
distributions from Forest et al. (24).

In the DICE model, a climate damage func-
tion specifying the economic damages from
global temperature increase is one of the impor-
tant linkages between the modeled social and
natural systems. We sampled from the proba-
bility distributions of Roughgarden and Schnei-
der (18), based on an expert elicitation of a
much broader range of climate damage func-
tions than in the original DICE model. We used
these probability distributions and those for cli-
mate sensitivity to conduct MC analyses with
the DICE model (/9). Specification of the third
uncertain parameter we considered, the dis-
count rate, has a strong normative component,
with a variety of defended options (supporting
online text). To prevent a high discount rate
from masking variation in model results be-
cause of variation in other uncertain parameters
(supporting online text), we set the pure rate of
time preference (PRTP) to 0% —corresponding
to a discount rate of roughly 1% —and per-
formed a sensitivity analysis (/9). This discount
rate falls within the currently debated range, at
the lower end (supporting online text).

Fig. 3. The modeled re- 1.0

We examined two types of model output un-
der different assumption sets of the parameters we
varied: global average surface temperature change
in 2100 (25), which we used to evaluate the
potential for DAI (12); and “optimal” carbon tax-
es (26), which we used to evaluate the magnitude
of induced climate policy controls.

We first considered climate sensitivity un-
certainty, performing three MC analyses—
sampling from each climate sensitivity prob-
ability distribution separately (/9)—without
mitigation policy (to ensure that variation in
results are from variation in climate sensitiv-
ity). We produced probability distributions
for global temperature increase in 2100 (Fig.
2A) and indicate the percentage of outcomes
that result in temperature increases above
DAI[50%o]. The differences in the probability
distributions of Fig. 2A show how the range
of uncertainty still present among probability
estimates of climate sensitivity cascade to
uncertainty in our estimates for temperature
change in 2100. In all three, a significant
percentage of outcomes falls above
DAI[50%o] (dark gray).

We introduced climate policy controls
by performing a joint MC analysis of tem-
perature increase in 2100, varying both cli-
mate sensitivity and the climate damage
function (/9), again indicating the percent-
age of DAI[50%o] exceedances (Fig. 2B).
With the exception of the A&S distribution,
for which the single MC analysis showed
relatively lower probability of DAI[50%o],
the joint MC runs showed significantly
lower percentages of DAI[50%o]. It may
seem that the most likely outcome of the
joint MC runs is a relatively low tempera-
ture increase—an optimistic result. Howev-
er, low temperature change outcomes result
from more stringent model-generated cli-

lationship between car-
bon taxes in 2050 (a
proxy for general cli-
mate policy controls)
and the probability of
DAl in 2100 (79). Each
color band represents
a different percentile
range from the DAI
threshold CDF—a lower
percentile from the CDF
representing a lower
temperature threshold
for DA|, as indicated. The
solid lines indicate the
percentage of outcomes
exceeding the stated
threshold for DAI[X%o), 0 50
where X is the percentile

from the DAI CDF deriv-

Probability of “DAI"

[10%.] = 1.476°C
0.9
DAI[25%.] = 1.925°C

100 150 200 250 300
Carbon Tax 2050 ($/Ton C)

350 400

able from Fig. 1, for any given level of climate policy controls. At any DAI[X%o] threshold, climate policy
controls significantly reduce the probability of DAL, and at the median DAI[50%o] threshold (thicker black
line), a 2050 carbon tax of >$150/ton of C is the model-dependent result necessary to reduce the probability
of DAI from ~45% to near zero. [With a 3% PRTP, this carbon tax is an order of magnitude less and the

reduction in DA is on the order of 10% (27).]
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mate policy controls, because of the inclu-
sion of climate damages. Time-varying me-
dian carbon taxes are more than $50/ton of
C by 2010, and more than $100/ton of C by
2050 in each joint analysis. Low warming
and reduced probability of DAI[50%.] are
reached if carbon taxes are high, when
higher climate sensitivities and higher cli-
mate damage functions sampled from their
probability distributions combine to force
the model “agent” to react. This policy-
relevant complexity is captured through a
probabilistic framework.

The analysis above only considers the me-
dian DAI[50%o] threshold; therefore, these
results do not fully describe the relationship
between climate policy and the potential for
other thresholds for DAI. We characterized the
relationship between climate policy controls
and the potential for DAI by calculating a series
of single MC analyses, varying climate sensi-
tivity (as in Fig. 2A) for a range of fixed
damage functions. For each damage function,
ranging from the 10th through the 90th percen-
tile of the climate damage probability distribu-
tion (/8), we performed an MC analysis sam-
pling from each climate sensitivity distribution.
We also calculated the carbon tax in 2050 for
model runs that use the median climate sensi-
tivity of each probability distribution and the
median damage function (79).

Averaging the results from each set of
three MC analyses, we determined the prob-
ability of outcomes that exceed various DAI
thresholds at a given 2050 carbon tax under
the assumptions described above (/9) (Fig.
3). Each solid line corresponds to a different
percentile threshold, DAI[X%o], chosen from
our DAI CDF (Fig. 1)—a lower percentile X'
from the CDF represents a lower temperature
threshold for DAI (DAI[10%0] = 1.476°C,
DAI[50%0] = 2.85°C, for example). At any
DAL threshold, climate policy works: Higher
carbon taxes lower the probability of consid-
erable future temperature increase and reduce
the probability of DAI. Inspecting the median
threshold, DAI[50%o] (Fig. 3, thick black
line), indicates that a carbon tax by 2050 of
$150 to $200 per ton of C reduces the prob-
ability of DAI[50%0] from ~45% without
climate policy controls to nearly zero (27).

Finally, we demonstrated the effect of vary-
ing the discount rate. As before, we ran MC
analyses varying climate sensitivity, but at dif-
ferent values for PRTP and with the climate
damage function fixed at the median level (19).
A higher PRTP increases the discount rate,
implying that future climate damages are val-
ued less and calculated policies will be weaker.
Averaging over the outcomes for each climate
sensitivity distribution, we determined the rela-
tionship between the discount rate and the prob-
ability of DAI at different temperature thresh-
old levels (Fig. 4). As expected, increasing the
discount rate shifts higher the probability distri-
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Fig. 4. The modeled re-

lationship between the
PRTP—a factor deter-
mining the discount
rate—and the probabili-
ty of DAl in 2100 (79).
Increasing the PRTP (and
therefore the discount
rate) reduces the
present value of future
climate damages and in-
creases the probability
of DAI[X%o] as indicat-
ed, where X is the per-
centile from the DAI
CDF derivable from Fig.
1. The solid lines indicate
the percentage of out-
comes above the stated 0
threshold for DAI[X%o]

for any given level of

Probability of “DAI"

1 2 3

Pure Rate of Time Preference (PRTP)

PRTP or DAI percentile threshold X. At our median threshold DAI[50%o] (thicker black line), the probability
of DAI[50%o] rises from near zero with a 0% PRTP to 30% with a 3% PRTP, as originally specified in the

DICE model.

bution of future temperature increase—a lower
level of climate policy controls becomes “opti-
mal” and thus increases the probability of DAL
At DAI[50%o0] (Fig. 4, thick black line), the
probability rises from near zero with a 0%
PRTP to 30% with a 3% PRTP, as specified in
the original DICE model. It is also clear that at
PRTP values higher than 1%, the “optimal”
outcome becomes increasingly insensitive to
variation in future climate damages driven by
variation in climate sensitivity.

The DICE model is a highly simplified rep-
resentation of the climate and the economy, and
its specific predictions for temperature increase
or carbon tax are subject to considerable uncer-
tainty (28). Although it cannot provide high-
confidence quantitative answers, it is a trans-
parent model for examining trends and
processes, and its qualitative insights should be
considered seriously. We present our probabil-
ity distributions for future climate change to
demonstrate three issues: (i) Very different
levels are possible for the probability of DAI
depending on its definition. (ii) Regardless of
its definition, conventional climate policy con-
trols would bring about significant reduction in
the probability of DAI. (iii) This probabilistic
framework is an effective method for concep-
tualizing climate change policy decisions.

We chose to create a CDF for DAI based on
one plausible interpretation of IPCC work. In
certain regions and for certain sectors, different
groups might set thresholds for DAI at very
different levels. Selection of that threshold can
only be made through a decision-making pro-
cess that combines social and natural assess-
ments, evaluates the effects of climate change
and their likelihood, and incorporates value
judgments on inherent trade-offs. However, our
research shows that regardless of the threshold
for DAI climate policy will reduce the likeli-
hood of exceeding that threshold, and we sug-
gest that this is an effective way to present

model results and to demonstrate the value of
climate policy, in risk-management terms that
policymakers often employ.

Uncertainty in future states of natural and
social systems will never be completely re-
moved until future events are directly observed.
This unalterable fact requires societies wishing
to assess and influence future trends to act on
the best current knowledge in the face of
uncertainty. We believe that a probabilistic
framework—probability distributions and risk
diagrams such as Fig. 3—are an effective rep-
resentation of state-of-the-art results of scientif-
ic assessments and should be understood by a
wide audience, including policymakers. Policy-
makers have considerable experience dealing
with uncertainty and risk management. For ex-
ample, “acceptable risk” thresholds for nuclear
power, cancer, vehicular safety, etc., are com-
monplace, even if controversial. The probabil-
ity of DAI in many of the scenarios we discuss
is far higher (by tens of percent) than the “ac-
cepted” threshold in some of these fields
(though, of course, the dangers are all differ-
ent). Thus, this research suggests a clear mes-
sage: It is possible that some thresholds for
dangerous anthropogenic interference with the
climate system are already exceeded, and it is
likely that more such thresholds are approach-
ing. Despite great uncertainty in many aspects
of integrated assessment, prudent actions can
substantially reduce the likelihood and thus the
risks of dangerous anthropogenic interference.
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by any analyst. We know of one other effort to create
a CDF for dangerous climate change, presented by
Wigley (30). Previously, Azar and Rodhe chose 2°C as
their threshold for DAI (37), and O'Neill and Oppenhei-
mer chose thresholds between 1° and 3°C for individual
examples of DAl (32), without specifying ranges or
percentiles in any of these cases.
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24. C.E. Forest, P. H. Stone, A. P. Sokolov, M. R. Allen, M.
D. Webster, Science 295, 113 (2001).

25. Transient temperature change in 2100 is not, in
general, equilibrium change. The inertia of the cli-
mate system is such that climate change will contin-
ue long after greenhouse gas concentrations are sta-
bilized or emissions eliminated. Some outcomes that
avoid exceeding a DAI threshold until 2100 will ex-
ceed that threshold in the next century. Therefore,
the time horizon of analysis will affect the potential
for DAL However, what is “dangerous” is itself a
function of adaptive capacity, not a static quantity,
dependent on social and economic development. So,
the very threshold for any percentile X, DAI[X%o], can
itself change with time and social conditions.

26. In the DICE model, carbon taxes serve as a proxy for
general climate policy controls. Thus, we do not
present carbon tax data as a preferred method for
mitigation or a required method to produce our
results. Instead, these results should be seen as a
method to provide insights into coupled model be-
havior, using the carbon tax in DICE as a measure of
the magnitude of climate policy controls.

27. Results such as this are extremely sensitive to the
discount rate. For example, the increase in the climate

damage function indicated above that produces a
~45% reduction in the probability of DAI[50%o] with a
0% PRTP produces a reduction of only ~10% and an
order of magnitude lower “optimal” carbon tax when
we used a 3% PRTP, the value employed by the original
DICE model. We chose to use a 0% PRTP for Fig. 3
exactly for this reason—that using a high discount rate
masks the variation in model results because of changes
in parameters other than the discount rate, and observ-
ing variation in model results due to other parameters is
central to our analysis.

28. We consider three of these sources of uncertainty in the
three parameters we varied, but there are other impor-
tant sources of uncertainty. The DICE model does not
consider adaptation, as opposed to mitigation, which
theoretically would shift the probability distribution for
DAl to higher temperature levels. A highly adaptive
society would be less likely to experience dangerous
impacts, although this would not be as likely to apply to
the first reason for concern, damages to natural sys-
tems. The DICE model also only considers mitigation
policies for CO,. It does not account for “knock-on”
impacts of CO, reductions on emissions of other atmo-
spheric substances, and it specifies a fixed path for
non-CO, greenhouse gases. Alternative emissions path-

Timing, Duration, and
Transitions of the Last
Interglacial Asian Monsoon
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Thorium-230 ages and oxygen isotope ratios of stalagmites from Dongge Cave,
China, characterize the Asian Monsoon and low-latitude precipitation over the
past 160,000 years. Numerous abrupt changes in 80/'0 values result from
changes in tropical and subtropical precipitation driven by insolation and mil-
lennial-scale circulation shifts. The Last Interglacial Monsoon lasted 9.7 = 1.1
thousand years, beginning with an abrupt (less than 200 years) drop in '80/'®0
values 129.3 *+ 0.9 thousand years ago and ending with an abrupt (less than
300 years) rise in '®0/"°0 values 119.6 + 0.6 thousand years ago. The start
coincides with insolation rise and measures of full interglacial conditions,
indicating that insolation triggered the final rise to full interglacial conditions.

The characterization of past climate is often
limited by the temporal resolution, geo-
graphic coverage, age precision and accu-
racy, and length and continuity of available
records. Among the most robust are ice
core records (I, 2), which characterize,
among other measures of climate, the oxy-
gen isotopic composition of precipitation.
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Although many such records are bench-
marks, they are limited to high-latitude or
high-elevation sites, which record the oxy-
gen isotopic composition of the last frac-
tion of atmospheric moisture remaining af-
ter transit from moisture source regions.
Cave calcite also contains information
about the isotopic composition of meteoric
precipitation, is widespread, and can be
dated with 23°Th methods. Thus, caves may
yield well-dated, low-latitude, low-eleva-
tion records that characterize atmospheric
moisture earlier in its transit from source
regions. We report here on such a record of
Asian Monsoon precipitation, which covers
most times since the penultimate glacial
period, about 160 thousand years ago (ka).

We have previously reported a cave oxy-
gen isotope record of the East Asian Mon-
soon (3) from Hulu Cave, China [32°30'N,
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119°10’E; elevation 100 m; cave tempera-
ture 15.7°C; mean annual precipitation
380, spmow = — 8.4 per mil (%0) (VSMOW,
Vienna standard mean ocean water); and
mean annual precipitation 1036 mm] (table
S1), covering the last glacial period [75 ka
to 10 thousand years (ky) before the
present]. We now report similar data from
Dongge Cave, China, 1200 km WSW of
Hulu Cave, a site affected by the Asian
Monsoon. The Dongge record more than
doubles the time range covered in the Hulu
record and overlaps the Hulu record for
~35 ky, allowing comparison between
sites. Highlights include the timing and
rapidity of the onset (4) and end of the Last
Interglacial Asian Monsoon and the degree
of Last Interglacial Monsoon variability.
Dongge Cave is 18 km SE of Libo,
Guizhou Province (25°17'N, 108°5'E), at an
elevation of 680 m. The cave temperature
(15.6°C), mean annual 3'80 of precipitation
(—8.3%o0), and seasonal changes in precipita-
tion and 8'®0 of precipitation are similar to
those at Hulu, with mean annual precipitation
being higher (1753 mm) (table S1). Stalag-
mites D3 and D4 were collected ~100 m
below the surface, 300 and 500 m from the
entrance, in the 1100-m-long main passage-
way. D3 is 210 cm and D4 is 304 cm long,
with the diameters of each varying between
12 and 20 cm. Stalagmites were halved ver-
tically and drilled along growth axes to pro-
duce subsamples for oxygen isotope analysis
(5) and ?*°Th dating by thermal ionization (6,
7) and inductively coupled plasma mass spec-
troscopy (8). Sixty-six 2*°Th dates from D3
and D4 (table S2) and 10 dates from Hulu
Cave stalagmite H82 (table S3), all in strati-
graphic order, have 20 analytical errors of
+80 years at 10 ky and *1 ky at 120 ky. Six
hundred and forty 8'®0 measurements have
spatial resolution corresponding to 20 years
to 2 ky for different portions of D3 and D4
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