
phenomena, such as debris flows formed by
melting of near-surface ground ice, were pos-
sible. In practice, such debris flows may have
only occurred in some favored areas, because
a relatively large amount of water is required
in combination with the presence of cohe-
sionless material (in East Greenland, debris
flows are not generalized but only occur
where large amount of debris is produced).
Nevertheless, the possible presence of limited
amounts of liquid water in the near surface at
mid- and high latitudes predicted by our mod-
el have interesting consequences. It could
induce freeze-thaw cycle erosion on Mars,
and explain the polygons and patterned
ground observed on MOC images (8) around
60° latitude, which look similar to terrestrial
polygons related to the seasonal thawing of
ground.
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Quantifying Uncertainties in
Climate System Properties with

the Use of Recent Climate
Observations

Chris E. Forest,1* Peter H. Stone,1 Andrei P. Sokolov,1

Myles R. Allen,2 Mort D. Webster1†

We derive joint probability density distributions for three key uncertain prop-
erties of the climate system, using an optimal fingerprinting approach to
compare simulations of an intermediate complexity climate model with three
distinct diagnostics of recent climate observations. On the basis of the marginal
probability distributions, the 5 to 95% confidence intervals are 1.4 to 7.7 kelvin
for climate sensitivity and 20.30 to 20.95 watt per square meter for the net
aerosol forcing. The oceanic heat uptake is not well constrained, but ocean
temperature observations do help to constrain climate sensitivity. The uncer-
tainty in the net aerosol forcing is much smaller than the uncertainty range for
the indirect aerosol forcing alone given in the Intergovernmental Panel on
Climate Change Third Assessment Report.

Estimation of the uncertainty in long-term
climate projections requires estimates of the
probability density functions (pdfs) of key
properties of the climate system. Attempts
thus far (1, 2) have used pdfs based on expert
judgment to analyze such uncertainty. For
near-term climate change, recent studies (3)
have applied the uncertainty estimates de-
rived from the climate change detection al-
gorithm for particular models to climate pro-

jections based on these models. A key as-
sumption in this approach is that both forcing
and response do not change qualitatively be-
tween observed and forecast periods. Hence,
it is not applicable to modeled climate change
under scenarios that differ substantially from
the recent past (e.g., stabilization cases or
severe changes in sulfur emissions). Given
the political priority to establish what consti-
tutes a “safe” stabilization level for green-
house gases, an objective means of quantify-
ing uncertainty in the long-term response,
despite uncertainty in other forcings, is clear-
ly desirable.

These problems can be addressed in large
part by determining both the range of climate
system properties and the range of forcings
that produce simulations consistent with

1Joint Program on the Science Policy of Global
Change, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, USA. 2Department of Physics, Ox-
ford University, Oxford, OX1 3PU UK.

*To whom correspondence should be addressed. E-
mail: ceforest@mit.edu
†Present address: Department of Public Policy, Uni-
versity of North Carolina, Chapel Hill, NC 27599, USA.

R E P O R T S

www.sciencemag.org SCIENCE VOL 295 4 JANUARY 2002 113



20th-century climate change (4, 5). The two
most uncertain properties that control the cli-
mate system’s decadal to century response to
radiative forcings are climate sensitivity (S)
and the rate of heat uptake by the deep ocean
(Kv) (6). Simulations by modern atmosphere-
ocean general circulation models (AOGCMs)
reveal substantial differences in these prop-
erties between models (5). Previous estimates
of the uncertainties in these quantities have
generally been based only on expert judg-
ment and/or on the range of values found in
AOGCMs. A recent exception has estimated
the range of climate sensitivity from obser-
vations but with substantial simplifications
compared with this study (7, 8). Although
positive AOGCM climate change detection
results place a lower bound on climate sensi-
tivity (3, 5), the upper bound on S depends
strongly on the rate of ocean heat uptake (3,
5). The Massachusetts Institute of Technolo-
gy (MIT) climate model has the flexibility to
vary both S and Kv, unlike AOGCMs (9).

The primary uncertainty in the radiative
forcing is the total uncertainty in anthropo-
genic aerosol forcing that arises from the
uncertainty in aerosol radiative properties and
cloud effects as well as in their concentra-
tions over the industrial period (10, 11). [Un-
certainty in the natural forcings (primarily
solar and volcanic forcings) exists although
the estimated changes during the 20th century
appear to be small compared with the uncer-
tainty in the aerosol forcing (11).] Improving
on previous results (4, 5), we include the
strength of the anthropogenic aerosol forcing
as a third uncertainty. We describe this un-
certainty by the net forcing (both direct and
indirect) for the decade of the 1980s (Faer)
relative to pre-1860 levels.

We use the MIT two-dimensional (2D)
(zonal mean) statistical-dynamical model (8),
specifying both S and Kv as well as Faer, to
simulate the climate for the 1860–1995 peri-
od. We systematically vary the parameters in

question to assess which simulations “match”
the observed climate record. We make two
substantial improvements on previous stud-
ies. First, we apply the optimal fingerprint
detection algorithm (12–14) to three indepen-
dent diagnostics of the recent climate record
and to the results of climate simulations,
whereas previous results (4, 5, 7) were based
on comparisons with a single climate diag-
nostic. Second, we derive a joint pdf for the
three uncertain properties of the climate sys-
tem: S, Kv, and Faer, taking into account that
the probabilities for each parameter are con-
ditional on the other values, which indepen-
dent pdfs would not. From this joint pdf, we
can then determine the likelihood of the cli-
mate system response to individual forcing
scenarios (15).

The three diagnostics are derived from the
upper-air temperature record (16), the surface
temperature record (17, 18), and the record of
ocean temperatures (19). As in (4, 5), we use
the same upper-air temperature diagnostic as
in (14, 20). The temperature changes are
computed for points on a latitude-height grid
as the difference in the 1986–95 and 1961–
80 zonal means. The years 1963–64 and
1992 were removed to limit the effect of the
Mount Agung and Mount Pinatubo eruptions
on the estimated temperature changes.

We construct a surface temperature diag-
nostic (Fig. 1A) by computing decadal mean
temperature anomalies for the 1946–95 peri-
od with respect to a 1906–95 climatology
from the surface temperature record of (17,
18). Using an observational data mask, we
compute area-weighted zonal averages for
the temperature anomalies over four zonal
bands (90°S to 30°S, 30°S to 0°, 0° to 30°N,
and 30°N to 90°N) and create a latitude-time
pattern of temperature change. By using a
longer climatology, we make use of the ad-
ditional information that the most recent 50
years were warmer than the previous 40 [see
(3, 21)]. For both the surface and upper-air

temperature diagnostics, the observational er-
rors are small on such spatial scales com-
pared with natural variability (22) and are
neglected in this analysis.

Our third climate change diagnostic is the
trend in global-average ocean temperatures
down to 3000-m depth (Fig. 1B) computed
from estimates in (19). We compute a trend
from a 44-point time series of 5-year averag-
es using the 1948–95 period. Ordinary least
squares regression is used to compute the
trend with the observational errors providing
uncertainty in the estimated trend. Because
the data are sparsely distributed across ocean
basins, the global average will have uncer-
tainty because of this sampling error. One
attempt to include this is provided (19), but
the true uncertainty remains unknown. This
observational error was then added to the
climate noise estimate discussed next.

Each diagnostic is used to compute a
goodness-of-fit statistic, r 2, which is inverse-
ly weighted by the size of the deviations that
we should expect from climate noise (4, 5,
23). For each diagnostic, the climate noise
estimates were taken from successive seg-
ments of control simulations of two
AOGCMs (24). For the ocean diagnostic, an
additional estimate of the observational error
was included. From the r 2 statistics, a likeli-
hood is computed to provide a joint probabil-
ity distribution for the model parameter space
given the independent observations (4, 5).
This likelihood estimate represents the prob-
ability that a particular choice of model pa-
rameters is correct given the observed record
of climate change. More formally, we reject a
choice of model parameters, P (P 5 {S, Kv,
Faer}), as producing a simulation of the 20th
century that is inconsistent with observed
climate given the unforced variability of the
climate as estimated by AOGCMs (24) at
some level of significance. The distribution
of the r 2 statistic for a given diagnostic indi-
cates the diagnostic’s ability to reject partic-
ular regions of parameter space (Fig. 2).

In general, the combination of lower oce-
anic heat uptake, higher climate sensitivity,
and weaker aerosol cooling will provide a
simulation with a larger change in surface
and upper-air temperatures (Fig. 1). For the
deep ocean, however, a larger warming will
occur for stronger oceanic heat uptake. For
low climate sensitivity, these differences in
response show little dependence on oceanic
heat uptake. Thus, each diagnostic provides
distinct constraints on the parameter space.
The surface and upper-air diagnostics reject
similar regions of parameter space, namely
low Kv and high S, whereas the ocean diag-
nostic shows a rejection of the high Kv and
high S region. When aerosol cooling is in-
creased (decreased) (not shown for each di-
agnostic), the rejection regions shift toward
the higher (lower) response regions, indicat-
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Fig. 1. Global-mean
surface (A) and deep-
ocean temperatures (B)
for observations (black)
and the ensemble aver-
ages for three simula-
tions (blue, S 5 3.0 K,
Kv 5 7.5 cm2/s, Faer 5
20.75 W/m2; green,
S 5 6.2 K, Kv 5 20.
cm2/s, Faer 5 20.75
W/m2; and red, S 5 0.4
K, Kv 5 2.5 cm2/s;
Faer 5 20.75 W/m2;
see Fig. 2). The blue
case used model pa-
rameters near the me-
dian values in Fig. 4. The green case is accepted on the basis of surface temperature data but rejected
by deep-ocean temperatures, and vice versa for the red case. The black dashed lines indicate the 10-year
running mean (A) and the linear trend (B) estimated from the respective observational data. All
temperatures are anomalies from the 1961–90 average.
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ing that a higher sensitivity is required to
reproduce the observed temperature changes.

Because individual diagnostics provide
the likelihood that the modeled temperature
change is correct given a set of model param-
eters [or in Bayesian notation, p(DT ?P)], we
use results from each diagnostic to update the
probability distribution p(P?DT) by applying
Bayes’ theorem (25, 26). By choosing one
distribution as the initial prior, two sequential
posterior distributions are computed with the
final distribution representing the combined
uncertainty from the three climate change
diagnostics. If desired, a prior distribution
based on expert judgment can be used initial-
ly. In the absence of an expert prior, we
assume a uniform probability distribution as
the first prior (27).

The combined probability distribution
(Fig. 3) resulting from the Bayesian updating
procedure indicates that the constraints on
climate sensitivity and aerosol forcing are
fairly strong, whereas oceanic heat uptake is
less constrained. Recent papers (28, 29) have
examined the dependence of ocean tempera-
ture trends in specific basins, which may
provide better constraints. The marginal pdfs
(Fig. 4) summarize each parameter’s uncer-
tainty by accounting for uncertainty in others
(30). We also show the result when an expert
prior (31) is used for climate sensitivity while
keeping uniform priors on Kv and Faer. This
demonstrates that including expert judgment
will alter the marginal pdf for climate sensi-
tivity and changes the pdf(Faer) to compen-
sate for the reduced likelihood of high cli-
mate sensitivities. Although expert judg-
ments are in part subjective, they can take
into account information not included in our
analysis, such as paleoclimate data.

The joint probability distribution for S, Kv,
and Faer shows stronger constraints on model
properties than earlier results (4, 5, 7) owing
to two improvements in our analysis. Aero-
sol-forcing uncertainty is now considered ex-
plicitly, and the additional diagnostics place
limits on previously unconstrained regions of
parameter space.

With uniform priors, the strength of the
net aerosol forcing lies within 20.3 to 20.95
W/m2 for the 5 to 95% confidence range. The
main diagnostic constraining this forcing is
the surface temperature record. We stress that
the constrained quantity in this case is the net
nongreenhouse gas forcing. This uncertainty
range is much smaller than the uncertainty
range given by the Intergovernmental Panel
on Climate Change (IPCC) (11) for the indi-
rect aerosol forcing alone.

For the effective ocean diffusivity, the 5 to
95% confidence range is 1.8 to 56.0 cm2/s.
Although the lower bound is well constrained
by the observations (see Fig. 2), the estimated
probabilities are affected by the assumed pri-
or. This large uncertainty is much greater
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than that usually assumed (2, 7, 32). Ocean
heat uptake remains one of the least under-
stood large-scale processes in climate change
studies. Although many mechanisms are
known to affect heat uptake in the ocean, the
sensitivity of the global heat uptake to chang-
es in model parameterizations for these
mechanisms is poorly understood (33). Our
result suggests that more research is required.

With uniform priors, the 5 to 95% confi-
dence range for the climate sensitivity is es-
timated to be 1.4 to 7.7 K. We estimate the
probability of S being outside the IPCC’s
range of 1.5 to 4.5 K (32) to be 30% with a
23% chance of exceeding 4.5 K. With an
expert prior applied to climate sensitivity and
uniform priors elsewhere, climate sensitivity
is estimated to be within 1.3 to 4.2 K for the
5 to 95% range, and the probability of S being
outside the IPCC’s range decreases to 12%
with a 3.5% chance of exceeding 4.5 K. It is
not surprising that the application of the ex-

pert prior improves agreement with the IPCC
range, because both are based on similar ev-
idence and reasoning.

Although the estimated pdf is consistent
with the r 2 distributions, nonzero probabili-
ties will always exist outside the explored
parameter region (as indicated by the nonzero
probability for climate sensitivity at 10.0 K).
We could fit specific theoretical distributions
and use these to calculate the probability of
the tail regions. For example, a range of
theoretical distribution families fit to the cli-
mate sensitivity pdf indicate roughly a 3.5%
chance that S . 10 K. However, these distri-
butions all have infinite tails. Alternatively,
we could assume that the probability outside
the region explored is negligible.

Our estimates of probability are indepen-
dent of the MIT 2D model to the extent that
this model represents the large-scale behavior
of different 3D AOGCMs. On the basis of
comparisons of the transient behavior under
various forcing scenarios (9), the model be-
havior matches AOGCMs well for 100- to
150-year simulations. The MIT model cannot
simulate certain nonlinearities (e.g., the shut-
down of the thermohaline circulation), but
there is no indication of such behavior over
the past 150 years. As was shown in (9), the
dependence of changes in different character-
istics on surface warming for different ver-
sions of the MIT model is similar to that for
the different AOGCMs. Because we chose to
explore ranges of model parameters that ex-
tend beyond typical values of properties of
existing AOGCMs, it is important to note that
the MIT model produces similar dependen-
cies for the range of climate sensitivity used
in this study.

As described in the IPCC Third Assess-
ment Report (11), a long list of forcings can
be identified for the industrial period (1750 to
present). We included the three forcings
(greenhouse gases, sulfate aerosols, and
stratospheric ozone) that we expect to be
most important for the diagnostics we used.
When considering the implications of the
marginal pdf(Faer), we note that neglected
forcings, which have patterns similar to those
of the sulfate aerosols, are implicitly includ-
ed. Latitudinal variations dominate this pat-
tern (11, 34), adding further support for our
using a zonal mean model. The most serious
omission would be a forcing with a unique
spatial pattern.

Among the possible forcing factors (11),
the changes attributed to biomass burning,
mineral dust, land-use change, and solar ac-
tivity particularly have spatial distributions
different from sulfate aerosols. These esti-
mated forcings combine to produce a forcing
of 20.1 W/m2. The forcings with patterns
similar to sulfate aerosols (tropospheric
ozone, sulfate, black carbon, organic carbon,
and aerosol indirect effect) total an estimated

20.95 W/m2. Thus, we doubt that the addi-
tional factors would substantially alter our
results. Because we use the temperature
record for 1906–95, only the forcings for this
period should matter.

As discussed previously (5), the estimated
natural variability, which is used to compute
the noise covariance matrix in the detection
algorithm, is obtained from two AOGCMs
(24). Thus, we implicitly neglected the ex-
pected dependence of natural variability on
climate sensitivity or ocean heat uptake (35).

Despite these caveats, the estimated
p(P?DT) presented here provides an essential
improvement in quantifying uncertainty in
future projections of climate change. In par-
ticular, the method for estimating pdfs is
based on an objective technique and can be
updated with subjective information if de-
sired. The distinction between objective and
subjective components provides a clearer in-
terpretation of the results that can be used to
guide policy-makers engaged in the climate
change debate.
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parameters with (dashed) and without (solid)
the use of an expert prior for climate sensitivity
(31). The whisker plots show the 2.5 to 97.5%
(dots), 5 to 95% (vertical bars on ends), and 25
to 75% (box) probability ranges along with the
median (bar within box) and mean (diamond)
for each distribution. The main impact of the
expert prior is to eliminate the “fat tail” of high
sensitivity values that are not excluded on the
basis of recent obervations alone.
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Intracellular Iron Minerals in a
Dissimilatory Iron-Reducing

Bacterium
Susan Glasauer,* Sean Langley, Terry J. Beveridge

Among prokaryotes, there are few examples of controlled mineral formation;
the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or
greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putre-
faciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable
of dissimilatory iron reduction, produced microscopic intracellular grains of iron
oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon
atmosphere. The minerals, formed at iron concentrations found in the soil and
sedimentary environments where these bacteria are active, could represent an
unexplored pathway for the cycling of iron by bacteria.

Many of the metabolic pathways affecting min-
eral-bacterium interactions in anaerobic subsur-
face environments are poorly defined, despite
their potential impact on the lithosphere and
hydrosphere. Metal-reducing Shewanella spp.
are known to use mineral-bound Fe(III) [e.g.,
Fe (hydr)oxides] as the terminal electron accep-
tor for the membrane-bound electron transport
chain during respiration, and Fe21 from the
reduction forms extracellular fine-grained min-
erals (1). Little is known about changes to the
cell and its structure during the reduction of
Fe(III) minerals; investigators often use readily
soluble organo-Fe(III) complexes (e.g., Fe-cit-
rate), rather than Fe(III) minerals, for metabolic
studies on Fe reduction [e.g., (2)] because these
allow easy isolation of cells without their prob-
lematic separation from the granular mineral
matrix. Growth on soluble Fe could, however,
be quite different from growth on particulate
Fe(hydr)oxides, where the substrate is more
tenaciously bound. Tracking the fate of the
Fe21 produced during dissimilatory reduction
of Fe(III) minerals requires the monitoring of
changes in the cell during growth as well as in
the minerals produced. Such a study can eluci-
date the pathways of Fe and its toxic analogs
(e.g., U, Tc, and Cr) in natural systems, where
Fe minerals can be abundant but Fe chelates are
rare (3).

Cells of S. putrefaciens CN32 were grown
in a defined medium (1, 4). The initial cell
density was 2 3 107 colony-forming units
(CFU)/ml, which rapidly decreased to 6 3 106

CFU/ml during the first day and slowly cycled
at this level for 2 weeks before declining again.
A plateau in CFU/ml was eventually reached,
indicating that cells remained active and viable,
replacing themselves as others died so that a
steady state was reached. This slow growth

reflected the relatively poor nutrient conditions
relative to traditional batch culture methods.

Hydrous ferric oxide [termed two-line fer-
rihydrite because of the two broad diffraction
lines seen by x-ray diffraction (XRD) (5)]
was the electron acceptor. These ;50- to
150-nm fine-grained aggregates of ferrihy-
drite, when added to the medium, immediate-
ly adsorbed to the cells (Fig. 1) and were the
source of cellular Fe. The Fe concentrations
were representative of natural levels com-
monly found in marine and soil sedimentary
environments (6, 7). Significant Fe21 (rela-
tive to an uninoculated control) was detected
after 1 to 4 days by the ferrozine method (8),
and Fe21 increased for ;2 weeks before
decreasing slowly (Fig. 2). Intracellular fine-
grained (30 to 50 nm) granules were first
observed by transmission electron microsco-
py (TEM) 3 to 5 days after inoculation and
were never seen before the appearance of
Fe21 in the reaction mixture (9). By 14 days,
the proportion of cells with visible granules
had increased to .90% of the population,
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Table 1. Electron diffraction data for crystalline
intracellular particles formed by S. putrefaciens
CN32.

Standard
magnetite* (nm)

Sample (nm)

0.2967 (30)†
0.2532 (100) 0.2525 (311)‡
0.2424 (8)
0.2099 (20) 0.2044 (400)
0.1715 (10) 0.1780 (422)
0.1616 (30) 0.1570 (511)
0.1485 (40) 0.1506 (440)
0.1419 (2)
0.1328 (4)
0.1281 (10) 0.1301 (533)
0.1266 (4)
0.1212 (2)
0.1122 (4)
0.1093 (12) 0.1040 (731)

*ASTM card 19-629. †Denotes XRD intensity.
‡Denotes hkl values.
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